遍历python字典并处理每个值

时间:2019-04-11 17:13:54

标签: python pandas loops dataframe dictionary

我是一个相当新的python用户,我陷入了一个问题。任何指导将不胜感激。

我有一个熊猫数据框,其中有三列“ ID”,“干预”和“ GradeLevel”。参见下面的代码:

 data = [[100,'Long', 0], [101,'Short', 1],[102,'Medium', 2],[103,'Long', 0],[104,'Short', 1],[105,'Medium', 2]]

intervention_df = pd.DataFrame(data, columns = ['ID', 'Intervention', 'GradeLevel'])

然后,我创建了一个按“干预”分组的数据帧字典。参见下面的代码:

intervention_dict = {Intervention: dfi for Intervention, dfi in df.groupby('Intervention')}

我的问题是,您可以遍历字典的值并操纵字典的每个值吗?具体来说,我正在尝试引用查找表。查找表可以被认为是名册。我的目标是将名单中的所有人标记为“是-干预名称”或“否干预”。之所以变得棘手,是因为例如说长期干预只有GradeLevel0。这意味着我想将干预级别0的任何人标记为'是-长',而将干预级别'0'中没有的人标记为'否-长”。 '这将成为名为'Value'的新列。我还需要创建另一个变量“ Category”,在该示例中将指定干预名称,即为“ Long”

lookup_data = [[100, 0], [101, 1],[102, 2],[103, 0],[104, 1],[105, 2], [106, 0], [107, 0],[108, 2],[109, 1]]
lookup_df = pd.DataFrame(lookup_data, columns = ['ID', 'GradeLevel'])

例如,“ Long”字典在处理后将如下所示:

longint_data = [[100,'Long', 'Yes - Long'],[103,'Long', 'Yes - Long'], [106,'Long', 'No - Long'], [107,'Long', 'No - Long']]
longint_df = pd.DataFrame(longint_data, columns = ['ID','Category', 'Value'])

所有操作后所需的最终输出如下所示:

result_data = [[100,'Long', 'Yes - Long'] , [101,'Short','Yes - Short'], [102,'Medium','Yes - Medium'], [103,'Long', 'Yes - Long'], [104,'Short','Yes - Short'] , [105, 'Medium','Yes - Medium'], [106,'Long', 'No - Long'], [107,'Long', 'No - Long'], [108,'Medium','No - Medium'], [109,'Short','No - Short']]

result_df = pd.DataFrame(result_data, columns = ['ID','Category', 'Value'])

谢谢!

2 个答案:

答案 0 :(得分:2)

这就是我想要的。.但是如果没有更清晰的解释,我不确定。

data = [[100,'Long', 0], [101,'Short', 1],[102,'Medium', 2],[103,'Long', 0],[104,'Short', 1],[105,'Medium', 2]]
intervention_df = pd.DataFrame(data, columns = ['ID', 'Intervention', 'GradeLevel'])

lookup_data = [[100, 0], [101, 1],[102, 2],[103, 0],[104, 1],[105, 2], [106, 0], [107, 0],[108, 2],[109, 1]]
lookup_df = pd.DataFrame(lookup_data, columns = ['ID', 'GradeLevel'])


df= pd.merge(intervention_df.assign(y='Yes'), lookup_df, on=['ID', 'GradeLevel'], how='outer')
df.loc[df.y.isnull(), 'y'] = 'No'


    ID Intervention  GradeLevel    y
0  100         Long           0  Yes
1  101        Short           1  Yes
2  102       Medium           2  Yes
3  103         Long           0  Yes
4  104        Short           1  Yes
5  105       Medium           2  Yes
6  106          NaN           0   No
7  107          NaN           0   No
8  108          NaN           2   No
9  109          NaN           1   No

答案 1 :(得分:1)

这里的解决方案不使用字典intervention_dict。以下是我从您的命令中获得的数据:

In [1048]: intervention_df
Out[1048]:
    ID Intervention  GradeLevel
0  100         Long           0
1  101        Short           1
2  102       Medium           2
3  103         Long           0
4  104        Short           1
5  105       Medium           2

In [1049]: lookup_df
Out[1049]:
    ID  GradeLevel
0  100           0
1  101           1
2  102           2
3  103           0
4  104           1
5  105           2
6  106           0
7  107           0
8  108           2
9  109           1

步骤1 :在lookup_dfintervention_df之间进行外部合并,创建列Valueset_indexGradeLevel

In [1059]: df = lookup_df.merge(intervention_df, on=['ID', 'GradeLevel'], how='outer').assign(Value='Yes - '+intervention_df['Intervention']).set_index('GradeLevel')

In [1060]: df
Out[1060]:
             ID Intervention         Value
GradeLevel
0           100         Long    Yes - Long
1           101        Short   Yes - Short
2           102       Medium  Yes - Medium
0           103         Long    Yes - Long
1           104        Short   Yes - Short
2           105       Medium  Yes - Medium
0           106          NaN           NaN
0           107          NaN           NaN
2           108          NaN           NaN
1           109          NaN           NaN

第2步:创建df_fillna以在NaN中填充df

In [1063]: df_fillna = intervention_df.groupby('Intervention').head(1).assign(Value='No - '+intervention_df['Intervention']).set_index('GradeLevel')

In [1064]: df_fillna
Out[1064]:
             ID Intervention        Value
GradeLevel
0           100         Long    No - Long
1           101        Short   No - Short
2           102       Medium  No - Medium

第3步(最终):使用combine_first来填充NaN值中的df中的df_fillna,并删除reset_index 'GradeLevel and doing sort_values on ID`

In [1068]: df.combine_first(df_fillna).sort_values('ID').reset_index(drop=True)
Out[1068]:
    ID Intervention         Value
0  100         Long    Yes - Long
1  101        Short   Yes - Short
2  102       Medium  Yes - Medium
3  103         Long    Yes - Long
4  104        Short   Yes - Short
5  105       Medium  Yes - Medium
6  106         Long     No - Long
7  107         Long     No - Long
8  108       Medium   No - Medium
9  109        Short    No - Short