使用列值在数据框中创建新行

时间:2019-04-11 12:38:01

标签: r dataframe

我正在尝试通过从列值创建新行来格式化R中的凌乱数据框。数据片段如下所示。

id  producer  pcountry  collaborator  ccountry   val
1    J&J       USA        Pfizer       USA       25

2    Biodiem   AUS        PhaseBio     USA       65
                          GeneScience  China     

3    Shire     Ireland       N/A        N/A      54

4    Sanofi    France        N/A        N/A      64

基本上,我想使用最后两列中的值在数据框中创建新行。到目前为止,我已经使用splitstackshape包获得了这段代码。

df2 <- cSplit(df, 4, "\r", "long")

这将对协作者列(例如上面的第2行)中具有多个值的条目执行此工作。使用我的代码可以给我:`

id  producer  pcountry  collaborator  ccountry   val
1    J&J       USA        Pfizer       USA       25

2    Biodiem   AUS        PhaseBio     USA       65
                                       China     

3    Biodiem   AUS        Genescience  USA       65
                                       China

4    Shire     Ireland       N/A        N/A      54

5    Sanofi    France        N/A        N/A      64

但是,我要处理的数据还有很多事情要做。我希望协作者列的值与ccountry列的值匹配,因此此处的第3行在China列中的值为ccountry,而第2行则为USA。我尝试将两列都添加到代码中,就像df2 <- cSplit(df, c(4,5), "\r", "long")一样,但这只会造成很大的麻烦。

最后,由于代码仅使用新行分隔符创建新条目,因此它会忽略只有1值的行(如第1行),因为它们没有新行。我希望这些也包括在内。

是否有任何方法可以更改此代码以执行这两个附加步骤,还是需要为此编写一个函数?

编辑:这是数据段

     id producer pcountry collaborator              ccountry         val
  <dbl> <chr>    <chr>    <chr>                     <chr>          <dbl>
1     1 J&J      USA      Pfizer                    USA               25
2     2 Biodiem  AUS      "PhaseBio\r\nGenescience" "USA\r\nChina"    65
3     3 Shire    Ireland  NA                        NA                54
4     4 Sanofi   France   NA                        NA                64
structure(list(id = c(1, 2, 3, 4), producer = c("J&J", "Biodiem", 
"Shire", "Sanofi"), pcountry = c("USA", "AUS", "Ireland", "France"
), collaborator = c("Pfizer", "PhaseBio\r\nGenescience", NA, 
NA), ccountry = c("USA", "USA\r\nChina", NA, NA), val = c(25, 
65, 54, 64)), row.names = c(NA, -4L), class = c("tbl_df", "tbl", 
"data.frame"))

这是预期的结果

     id producer pcountry collaborator ccountry   val
  <dbl> <chr>    <chr>    <chr>        <chr>    <dbl>
1     1 J&J      USA      NA           NA          25
2     2 J&J      USA      Pfizer       USA         25
3     3 Biodiem  AUS      NA           NA          65
4     4 Biodiem  AUS      PhaseBio     USA         65
5     5 Biodiem  AUS      Genescience  China       65
6     6 Shire    Ireland  NA           NA          54
7     7 Sanofi   France   NA           NA          64
structure(list(id = c(1, 2, 3, 4, 5, 6), producer = c("J&J", 
"J&J", "Biodiem", "Biodiem", "Biodiem", "Shire"), pcountry = c("USA", 
"USA", "AUS", "AUS", "AUS", "Ireland"), collaborator = c(NA, 
"Pfizer", NA, "PhaseBio", "Genescience", NA), ccountry = c(NA, 
"USA", NA, "USA", "China", NA), val = c(25, 25, 65, 65, 65, 54
)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"
)) 

2 个答案:

答案 0 :(得分:1)

使用tidyr超级简单:

require(tidyr)
separate_rows(df, collaborator,ccountry, sep="\r\n")

# A tibble: 5 x 6
     id producer pcountry collaborator ccountry   val
  <dbl> <chr>    <chr>    <chr>        <chr>    <dbl>
1     1 J&J      USA      Pfizer       USA         25
2     2 Biodiem  AUS      PhaseBio     USA         65
3     2 Biodiem  AUS      Genescience  China       65
4     3 Shire    Ireland  NA           NA          54
5     4 Sanofi   France   NA           NA          64

如果您希望所有这些带有NA的额外行供协作者和国家使用,您可以执行以下操作:

require(tidyr)
require(dplyr)
df %>% mutate(collaborator=ifelse(is.na(collaborator), NA, paste0("\r\n",collaborator)), 
    ccountry=ifelse(is.na(ccountry), NA, paste0("\r\n",ccountry))) %>% # Create extra rows before non NA rows
  separate_rows(collaborator,ccountry, sep="\r\n") %>% 
  mutate(collaborator=ifelse(collaborator=="",NA,collaborator), 
    ccountry=ifelse(ccountry=="", NA, ccountry)) # change empty strings to NAs
# A tibble: 7 x 6
     id producer pcountry collaborator ccountry   val
  <dbl> <chr>    <chr>    <chr>        <chr>    <dbl>
1     1 J&J      USA      NA           NA          25
2     1 J&J      USA      Pfizer       USA         25
3     2 Biodiem  AUS      NA           NA          65
4     2 Biodiem  AUS      PhaseBio     USA         65
5     2 Biodiem  AUS      Genescience  China       65
6     3 Shire    Ireland  NA           NA          54
7     4 Sanofi   France   NA           NA          64

答案 1 :(得分:1)

考虑在import firebase from './firebase' export async function loginWithFacebook() { const { type, token } = await Expo.Facebook.logInWithReadPermissionsAsync('2197841940631405', { permissions: ['public_profile', 'email']}); console.log(type); if (type == 'success') { const credential = firebase.auth.FacebookAuthProvider.credential(token); firebase.auth().signInWithCredential(credential).catch(error => { console.log(error) }) } } 分组过程中使用strsplit的基本R方法:

by

Rextester demo