Pandas-创建一个基于列值插入新行的表?

时间:2017-12-06 19:08:48

标签: python pandas dataframe

我有一个数据框,其中包含一个项目的名称,数据,然后是一行中的竞争对手数据:

 name   value1   value2    ex_value1     ex_value2   
 jim       0.4      0.6           0.7           0.3  
 tim       0.2      0.8   0.766666667   0.233333333  
 john        1        0           0.5           0.5  
 paul      0.9      0.1   0.533333333   0.466666667  

我想要做的是创建一个按名称包含索引的新表,但根据竞争对手的数据插入新行,以便显示jim,ex-jim,tim,ex-tim等:

   name       value1        value2     
  jim               0.4           0.6  
  tim               0.2           0.8  
  john                1             0  
  paul              0.9           0.1  
  ex_jim            0.7           0.3  
  ex_tim    0.766666667   0.233333333  
  ex_john           0.5           0.5  
  ex_paul   0.533333333   0.466666667  

我该怎么做呢?我是否必须在名称上设置索引,然后以这种方式插入新的?我会通过一个循环得到这个吗?感谢对此的指导

5 个答案:

答案 0 :(得分:2)

您可以使用concat

执行此操作
df_ex = df[['name','ex_value1', 'ex_value2']].rename(columns = {'ex_value1': 'value1', 'ex_value2': 'value2'})

df_ex['name'] = 'ex_' + df_ex['name']

pd.concat([df[['name','value1', 'value2']], df_ex ]).round(2)

    name    value1  value2
0   jim     0.40    0.60
1   tim     0.20    0.80
2   john    1.00    0.00
3   paul    0.90    0.10
0   ex_jim  0.70    0.30
1   ex_tim  0.77    0.23
2   ex_john 0.50    0.50
3   ex_paul 0.53    0.47

答案 1 :(得分:1)

我想重新创建df,你可以在最后添加reset_index()

pd.DataFrame(df.iloc[:,1:].values.reshape(8,2),index=['','ex_']*4+df.name.repeat(2),columns=['value1','value2'])
Out[986]: 
           value1    value2
name                       
jim      0.400000  0.600000
ex_jim   0.700000  0.300000
tim      0.200000  0.800000
ex_tim   0.766667  0.233333
john     1.000000  0.000000
ex_john  0.500000  0.500000
paul     0.900000  0.100000
ex_paul  0.533333  0.466667

答案 2 :(得分:0)

我建议将您的数据帧拆分为两个,然后再将它们重新连接起来。类似的东西:

import pandas as pd

df = pd.DataFrame([['jim', .4, .6, .7, .3], ['john', 1, 0, .5, .5]], columns=['name', 'value1', 'value2', 'ex_value1', 'ex_value2'])

ex_df = df.copy()

ex_df['name'] = 'ex_'+ex_df['name'].astype(str)

ex_df = ex_df[['name', 'ex_value1', 'ex_value2']]
ex_df.columns = ['name', 'value1', 'value2']

df = df[['name', 'value1', 'value2']]

frames = (df, ex_df)

new = pd.concat(frames).reset_index()
new = new[['name', 'value1', 'value2']]

print(new)

#output
         name  value1  value2
0      jim     0.4     0.6
1     john     1.0     0.0
2   ex_jim     0.7     0.3
3  ex_john     0.5     0.5

答案 3 :(得分:0)

你可以去

def myfunc(row):
    return pd.Series({'name': 'ex_{}'.format(row['name']), 
                      'value1': row['ex_value1'], 
                      'value2': row['ex_value2']})

df2 = df[~df['name'].astype(str).str.startswith('ex_')].apply(myfunc,axis =1)
df = pd.concat([df[['name', 'value1', 'value2']], df2])

这仅将函数myfunc应用于name不以ex_开头的行。 myfunc()会返回一个新的数据框,然后将其连接到df

<小时/> 对于单线爱好者(虽然不可取,但确实如此):

df = pd.concat([df[['name', 'value1', 'value2']], 
                df[~df['name'].astype(str).str.startswith('ex_')].apply(myfunc,axis = 1)])

答案 4 :(得分:0)

您可以使用meltpivot

的组合
df2 = df.melt('name')
df2.loc[df2.variable.str.contains('ex'),'name'] = 'ex_' +df2.name
df2.variable = df2.variable.str.strip('ex_')
df2 = df2.pivot(index='name',columns='variable').reset_index()
df2.columns = df2.columns.droplevel(0)

给你

variable             value1    value2
0          ex_jim  0.700000  0.300000
1         ex_john  0.500000  0.500000
2         ex_paul  0.533333  0.466667
3          ex_tim  0.766667  0.233333
4             jim  0.400000  0.600000
5            john  1.000000  0.000000
6            paul  0.900000  0.100000
7             tim  0.200000  0.800000