我创建了自己的非常简单的1层神经网络,专门研究二进制分类问题。输入数据点乘以权重并加上一个偏差。整个事物相加(加权和)并通过激活函数(例如relu
或sigmoid
)进行馈送。那将是预测输出。不涉及其他任何层(即隐藏层)。
仅出于我自己对数学方面的理解,我不想使用现有的库/包(例如Keras,PyTorch,Scikit-learn ..etc),而只是想使用简单的python创建神经网络。码。该模型在方法(simple_1_layer_classification_NN
)中创建,该方法采用必要的参数进行预测。但是,我遇到了一些问题,因此下面列出了一些问题以及我的代码。
P.s。对于包含这么多代码,我深表歉意,但是我不知道在不参考相关代码的情况下如何提出问题。
问题:
1-当我通过一些训练数据集来训练网络时,我发现最终的平均准确度会随着不同数量的时期而完全不同,对于某种最佳数量的时期绝对没有明确的规律。我将其他参数保持不变:learning rate = 0.5
,activation = sigmoid
(因为它是1层-既是输入层又是输出层。不涉及任何隐藏层。我读过sigmoid
适合输出层超过relu
),cost function = squared error
。以下是不同时期的结果:
Epoch = 100,000。 平均准确度:50.10541638874056
时期= 500,000。 平均准确度:50.08965597645948
Epoch = 1,000,000。 平均准确度:97.56879179064482
时期= 7,500,000。 平均准确度:49.994692515332524
史诗750,000。 平均准确度:77.0028368954157
Epoch = 100。 平均准确度:48.96967591507596
Epoch = 500。 平均准确度:48.20721972881673
时期= 10,000。 平均准确度:71.58066454336122
时期= 50,000。 平均准确度:62.52998222597177
Epoch = 100,000。 平均准确度:49.813675726563424
Epoch = 1,000,000。 平均准确度:49.993141329926374
如您所见,似乎没有明确的模式。我尝试了100万个时代,并获得了97.6%的准确性。然后,我尝试了750万个时代,准确率达到了50%。五百万个纪元也获得了50%的准确性。 100个纪元导致49%的准确性。然后是真正奇怪的一个,再次尝试了100万个时代,并获得了50%。
因此,我在下面共享我的代码,因为我不相信网络在做任何学习。似乎只是随机猜测。我应用了反向传播和偏导数的概念来优化权重和偏差。所以我不确定我的代码在哪里出问题。
2- simple_1_layer_classification_NN
参数是我包含在input_dimension
方法的参数列表中的参数之一。起初,我认为需要锻炼输入层所需的权重数。然后我意识到,只要将dataset_input_matrix
(特征矩阵)参数传递给方法,我就可以访问矩阵的随机索引以访问来自矩阵(input_observation_vector = dataset_input_matrix[ri]
)的随机观测向量。然后遍历观察以访问每个功能。观测向量的圈数(或长度)将准确地告诉我需要多少个权重(因为每个特征都需要一个权重(作为其系数)。因此(len(input_observation_vector))
会告诉我)输入层,因此不需要让用户将input_dimension
参数传递给方法。
所以我的问题很简单,当可以简单地通过评估输入矩阵中观察向量的长度来解决这个问题时,是否有必要包含一个input_dimension
参数?
3-当我尝试绘制costs
值的数组时,没有任何显示-plt.plot(y_costs)
。 cost
值(从每个纪元产生)仅每50个纪元附加到costs
数组。这是为了避免在纪元数确实很高的情况下在数组中添加了如此多的cost
元素。在行:
if i % 50 == 0:
costs.append(cost)
进行一些调试时,发现方法返回后,costs
数组为空。我不确定为什么会这样,何时应该每隔50个时代追加一个cost
值。可能我忽略了一个看不见的非常愚蠢的东西。
在此先非常感谢,并再次为冗长的代码道歉。
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import sys
# import os
class NN_classification:
def __init__(self):
self.bias = float()
self.weights = []
self.chosen_activation_func = None
self.chosen_cost_func = None
self.train_average_accuracy = int()
self.test_average_accuracy = int()
# -- Activation functions --:
def sigmoid(x):
return 1/(1 + np.exp(-x))
def relu(x):
return np.maximum(0.0, x)
# -- Derivative of activation functions --:
def sigmoid_derivation(x):
return NN_classification.sigmoid(x) * (1-NN_classification.sigmoid(x))
def relu_derivation(x):
if x <= 0:
return 0
else:
return 1
# -- Squared-error cost function --:
def squared_error(pred, target):
return np.square(pred - target)
# -- Derivative of squared-error cost function --:
def squared_error_derivation(pred, target):
return 2 * (pred - target)
# --- neural network structure diagram ---
# O output prediction
# / \ w1, w2, b
# O O datapoint 1, datapoint 2
def simple_1_layer_classification_NN(self, dataset_input_matrix, output_data_labels, input_dimension, epochs, activation_func='sigmoid', learning_rate=0.2, cost_func='squared_error'):
weights = []
bias = int()
cost = float()
costs = []
dCost_dWeights = []
chosen_activation_func_derivation = None
chosen_cost_func = None
chosen_cost_func_derivation = None
correct_pred = int()
incorrect_pred = int()
# store the chosen activation function to use to it later on in the activation calculation section and in the 'predict' method
# Also the same goes for the derivation section.
if activation_func == 'sigmoid':
self.chosen_activation_func = NN_classification.sigmoid
chosen_activation_func_derivation = NN_classification.sigmoid_derivation
elif activation_func == 'relu':
self.chosen_activation_func = NN_classification.relu
chosen_activation_func_derivation = NN_classification.relu_derivation
else:
print("Exception error - no activation function utilised, in training method", file=sys.stderr)
return
# store the chosen cost function to use to it later on in the cost calculation section.
# Also the same goes for the cost derivation section.
if cost_func == 'squared_error':
chosen_cost_func = NN_classification.squared_error
chosen_cost_func_derivation = NN_classification.squared_error_derivation
else:
print("Exception error - no cost function utilised, in training method", file=sys.stderr)
return
# Set initial network parameters (weights & bias):
# Will initialise the weights to a uniform distribution and ensure the numbers are small close to 0.
# We need to loop through all the weights to set them to a random value initially.
for i in range(input_dimension):
# create random numbers for our initial weights (connections) to begin with. 'rand' method creates small random numbers.
w = np.random.rand()
weights.append(w)
# create a random number for our initial bias to begin with.
bias = np.random.rand()
# We perform the training based on the number of epochs specified
for i in range(epochs):
# create random index
ri = np.random.randint(len(dataset_input_matrix))
# Pick random observation vector: pick a random observation vector of independent variables (x) from the dataset matrix
input_observation_vector = dataset_input_matrix[ri]
# reset weighted sum value at the beginning of every epoch to avoid incrementing the previous observations weighted-sums on top.
weighted_sum = 0
# Loop through all the independent variables (x) in the observation
for i in range(len(input_observation_vector)):
# Weighted_sum: we take each independent variable in the entire observation, add weight to it then add it to the subtotal of weighted sum
weighted_sum += input_observation_vector[i] * weights[i]
# Add Bias: add bias to weighted sum
weighted_sum += bias
# Activation: process weighted_sum through activation function
activation_func_output = self.chosen_activation_func(weighted_sum)
# Prediction: Because this is a single layer neural network, so the activation output will be the same as the prediction
pred = activation_func_output
# Cost: the cost function to calculate the prediction error margin
cost = chosen_cost_func(pred, output_data_labels[ri])
# Also calculate the derivative of the cost function with respect to prediction
dCost_dPred = chosen_cost_func_derivation(pred, output_data_labels[ri])
# Derivative: bringing derivative from prediction output with respect to the activation function used for the weighted sum.
dPred_dWeightSum = chosen_activation_func_derivation(weighted_sum)
# Bias is just a number on its own added to the weighted sum, so its derivative is just 1
dWeightSum_dB = 1
# The derivative of the Weighted Sum with respect to each weight is the input data point / independant variable it's multiplied by.
# Therefore I simply assigned the input data array to another variable I called 'dWeightedSum_dWeights'
# to represent the array of the derivative of all the weights involved. I could've used the 'input_sample'
# array variable itself, but for the sake of readibility, I created a separate variable to represent the derivative of each of the weights.
dWeightedSum_dWeights = input_observation_vector
# Derivative chaining rule: chaining all the derivative functions together (chaining rule)
# Loop through all the weights to workout the derivative of the cost with respect to each weight:
for dWeightedSum_dWeight in dWeightedSum_dWeights:
dCost_dWeight = dCost_dPred * dPred_dWeightSum * dWeightedSum_dWeight
dCost_dWeights.append(dCost_dWeight)
dCost_dB = dCost_dPred * dPred_dWeightSum * dWeightSum_dB
# Backpropagation: update the weights and bias according to the derivatives calculated above.
# In other word we update the parameters of the neural network to correct parameters and therefore
# optimise the neural network prediction to be as accurate to the real output as possible
# We loop through each weight and update it with its derivative with respect to the cost error function value.
for i in range(len(weights)):
weights[i] = weights[i] - learning_rate * dCost_dWeights[i]
bias = bias - learning_rate * dCost_dB
# for each 50th loop we're going to get a summary of the
# prediction compared to the actual ouput
# to see if the prediction is as expected.
# Anything in prediction above 0.5 should match value
# 1 of the actual ouptut. Any prediction below 0.5 should
# match value of 0 for actual output
if i % 50 == 0:
costs.append(cost)
# Compare prediction to target
error_margin = np.sqrt(np.square(pred - output_data_labels[ri]))
accuracy = (1 - error_margin) * 100
self.train_average_accuracy += accuracy
# Evaluate whether guessed correctly or not based on classification binary problem 0 or 1 outcome. So if prediction is above 0.5 it guessed 1 and below 0.5 it guessed incorrectly. If it's dead on 0.5 it is incorrect for either guesses. Because it's no exactly a good guess for either 0 or 1. We need to set a good standard for the neural net model.
if (error_margin < 0.5) and (error_margin >= 0):
correct_pred += 1
elif (error_margin >= 0.5) and (error_margin <= 1):
incorrect_pred += 1
else:
print("Exception error - 'margin error' for 'predict' method is out of range. Must be between 0 and 1, in training method", file=sys.stderr)
return
# store the final optimised weights to the weights instance variable so it can be used in the predict method.
self.weights = weights
# store the final optimised bias to the weights instance variable so it can be used in the predict method.
self.bias = bias
# Calculate average accuracy from the predictions of all obervations in the training dataset
self.train_average_accuracy /= epochs
# Print out results
print('Average Accuracy: {}'.format(self.train_average_accuracy))
print('Correct predictions: {}, Incorrect Predictions: {}'.format(correct_pred, incorrect_pred))
print('costs = {}'.format(costs))
y_costs = np.array(costs)
plt.plot(y_costs)
plt.show()
from numpy import array
#define array of dataset
# each observation vector has 3 datapoints or 3 columns: length, width, and outcome label (0, 1 to represent blue flower and red flower respectively).
data = array([[3, 1.5, 1],
[2, 1, 0],
[4, 1.5, 1],
[3, 1, 0],
[3.5, 0.5, 1],
[2, 0.5, 0],
[5.5, 1, 1],
[1, 1, 0]])
# separate data: split input, output, train and test data.
X_train, y_train, X_test, y_test = data[:6, :-1], data[:6, -1], data[6:, :-1], data[6:, -1]
nn_model = NN_classification()
nn_model.simple_1_layer_classification_NN(X_train, y_train, 2, 1000000, learning_rate=0.5)
答案 0 :(得分:0)
您是否尝试过降低学习率?您的网络可能会跳过本地最小值,因为它太高了。
之所以没有附加费用,是因为您在嵌套的for循环中使用了相同的变量“ i”。
# We perform the training based on the number of epochs specified
for i in range(epochs):
# create random index
ri = np.random.randint(len(dataset_input_matrix))
# Pick random observation vector: pick a random observation vector of independent variables (x) from the dataset matrix
input_observation_vector = dataset_input_matrix[ri]
# reset weighted sum value at the beginning of every epoch to avoid incrementing the previous observations weighted-sums on top.
weighted_sum = 0
# Loop through all the independent variables (x) in the observation
for i in range(len(input_observation_vector)):
# Weighted_sum: we take each independent variable in the entire observation, add weight to it then add it to the subtotal of weighted sum
weighted_sum += input_observation_vector[i] * weights[i]
# Add Bias: add bias to weighted sum
weighted_sum += bias
# Activation: process weighted_sum through activation function
activation_func_output = self.chosen_activation_func(weighted_sum)
# Prediction: Because this is a single layer neural network, so the activation output will be the same as the prediction
pred = activation_func_output
# Cost: the cost function to calculate the prediction error margin
cost = chosen_cost_func(pred, output_data_labels[ri])
# Also calculate the derivative of the cost function with respect to prediction
dCost_dPred = chosen_cost_func_derivation(pred, output_data_labels[ri])
# Derivative: bringing derivative from prediction output with respect to the activation function used for the weighted sum.
dPred_dWeightSum = chosen_activation_func_derivation(weighted_sum)
# Bias is just a number on its own added to the weighted sum, so its derivative is just 1
dWeightSum_dB = 1
# The derivative of the Weighted Sum with respect to each weight is the input data point / independant variable it's multiplied by.
# Therefore I simply assigned the input data array to another variable I called 'dWeightedSum_dWeights'
# to represent the array of the derivative of all the weights involved. I could've used the 'input_sample'
# array variable itself, but for the sake of readibility, I created a separate variable to represent the derivative of each of the weights.
dWeightedSum_dWeights = input_observation_vector
# Derivative chaining rule: chaining all the derivative functions together (chaining rule)
# Loop through all the weights to workout the derivative of the cost with respect to each weight:
for dWeightedSum_dWeight in dWeightedSum_dWeights:
dCost_dWeight = dCost_dPred * dPred_dWeightSum * dWeightedSum_dWeight
dCost_dWeights.append(dCost_dWeight)
dCost_dB = dCost_dPred * dPred_dWeightSum * dWeightSum_dB
# Backpropagation: update the weights and bias according to the derivatives calculated above.
# In other word we update the parameters of the neural network to correct parameters and therefore
# optimise the neural network prediction to be as accurate to the real output as possible
# We loop through each weight and update it with its derivative with respect to the cost error function value.
for i in range(len(weights)):
weights[i] = weights[i] - learning_rate * dCost_dWeights[i]
bias = bias - learning_rate * dCost_dB
# for each 50th loop we're going to get a summary of the
# prediction compared to the actual ouput
# to see if the prediction is as expected.
# Anything in prediction above 0.5 should match value
# 1 of the actual ouptut. Any prediction below 0.5 should
# match value of 0 for actual output
这导致在到达if语句时,“ i”始终为1
if i % 50 == 0:
costs.append(cost)
# Compare prediction to target
error_margin = np.sqrt(np.square(pred - output_data_labels[ri]))
accuracy = (1 - error_margin) * 100
self.train_average_accuracy += accuracy
编辑
因此,我尝试使用0到1之间的随机学习率对模型进行1000次训练,并且初始学习率似乎没有任何区别。其中有0.3%的精度达到0.60以上,没有一个达到70%以上。 然后我以自适应学习率运行了相同的测试:
# Modify the learning rate based on the cost
# Placed just before the bias is calculated
learning_rate = 0.999 * learning_rate + 0.1 * cost
这导致大约10-12%的模型的准确性高于60%,其中约2.5%的模型的准确性高于70%