我正在尝试通过在一层神经网络上使用backprop来解决OpenAI的CartPole-v1问题-同时使用状态操作值(Q(s ,一种))。我无法获得平均奖励,无法超过每集42步。有人可以帮忙吗?我的方法是否正确?例如,如果我每个时间步更新Q值,而不是每个情节批量更新,那么代理商甚至有可能学习最佳解决方案?在理论上似乎应该有可能。
详细信息:在试用并激活功能,随机策略并最终确定具有线性激活功能和以下参数的确定性策略后-我能够使我的代理始终如一收敛(约100-300步),获得平均约42步的回报。但这不会超过45。在下面的程序中调整参数(epsilon,discount_rate和学习率)不会对此产生巨大影响。
我尝试过在线寻找类似的解决方案,但是似乎没有一个适合我所遵循的方法。几乎所有解决方案都涉及在每个情节的结尾进行学习(通过存储SARS的数据)。 增加隐藏层的数量也无济于事。我还认为该算法不太可能在将来收敛到更高的价值,因为我已经运行了10000+集,并且平均奖励仍然在40左右。
首先,超参数:
epsilon = 0.5
lr = 0.05
discount_rate=0.9
# number of features in environment observations
num_inputs = 4
hidden_layer_nodes = 6
num_outputs = 2
q函数:
def calculateNNOutput(observation, m1, m2):
scaled_observation = scaleFeatures(observation)
hidden_layer = np.dot(scaled_observation, m1) # 1x4 X 4x6 -> 1x6
outputs = np.dot(hidden_layer, m2) # 1x6 X 6x2
return np.asmatrix(outputs) # 1x2
操作选择(策略):
def selectAction(observation):
#explore
global epsilon
if random.uniform(0,1) < epsilon:
return random.randint(0,1)
#exploit
outputs = calculateNNOutputs(observation)
print(outputs)
if (outputs[0,0] > outputs[0,1]):
return 0
else:
return 1
反向传播:
def backProp(prev_obs, m1, m2, experimental_values):
global lr
scaled_observation = np.asmatrix(scaleFeatures(prev_obs))
hidden_layer = np.asmatrix(np.dot(scaled_observation, m1)) #
outputs = np.asmatrix(np.dot(hidden_layer, m2)) # 1x6 X 6x2
delta_out = np.asmatrix((outputs-experimental_values)) # 1x2
delta_2=np.transpose(np.dot(m2,np.transpose(delta_out))) # 6x2 X 2x1 = 6x1_T = 1x6
GRADIENT_2 = (np.transpose(hidden_layer))*delta_out # 6x1 X 1x2 = 6x2 - same as w2
GRADIENT_1 = np.multiply(np.transpose(scaled_observation), delta_2) # 4 x 6 - same as w1
m1 = m1 - lr*GRADIENT_1
m2 = m2 - lr*GRADIENT_2
return m1, m2
Q学习:
def updateWeights(prev_obs, action, obs, reward, done):
global weights_1, weights_2
calculated_value = calculateNNOutputs(prev_obs)
if done:
experimental_value = -1
else:
actionValues = calculateNNOutputs(obs) # 1x2
experimental_value = reward + discount_rate*(np.amax(actionValues, axis = 1)[0,0])
if action==0:
weights_1, weights_2 = backProp(prev_obs, weights_1, weights_2, np.array([[experimental_value, calculated_value[0,1]]]))
else:
weights_1, weights_2 = backProp(prev_obs, weights_1, weights_2, np.array([[calculated_value[0,0],experimental_value]]))
编辑:主循环-
record = 0
total = 0
for i_episode in range(num_episodes):
if (i_episode%10 == 0):
print("W1 = ", weights_1)
print("W2 = ", weights_2)
observation = env.reset()
epsilon = max(epsilon*0.9,0.01)
lr = max(lr*0.9, 0.01)
print("Average steps = ", total/(i_episode+1))
print("Record = ", record)
for t in range(1000):
action_taken = selectAction(observation)
print(action_taken)
previous_observation=observation
observation, reward, done, info = env.step(action_taken) # take the selected action
updateWeights(previous_observation, action_taken, observation,reward, done) # perform backprop to update the action value
if done:
total = total+t
if t > record:
record = t
print("Episode {} finished after {} timesteps".format(i_episode,t+1))
break
我需要在方法/实现/参数调整方面进行任何更改吗?