我想使用Scikit Learn的this DBSCAN clustering alogrithm exampl e进行一些数据探索。我想遍历eps
的不同参数值。因此,我对以下代码进行了不同的修改,从第二个for循环中取出了最后一个图,格式设置为右下角。
print(__doc__)
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
eps = [0.1, 0.2, 0.3, 0.4]
plt.figure(figsize=(15,8))
for i in eps:
# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=i, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
plt.subplot(120 + i*1000 , title=i)
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
不过,我想将eps
的不同结果看成是彼此相邻的子图。格式如下:
[ ] [ ] [ ] [ ]
其他问题:最后,我还要对min_samples
进行10、12和15的迭代。如果我是对的,这将需要另一个for循环?
答案 0 :(得分:0)
我解决了将plt.subplot(120 + i*1000 , title=i)
的定义更改为
iterator = 0
plt.subplot(220 + iterator, title=i)
iterator += 1
解释必须是因为i
迭代了一个float数组。乘以1000可能不会得到完美的1、2、3、4,但是会导致接近Stil的结果保持小数点为零。这破坏了子图迭代的逻辑。
基本上很简单,但是昨晚我很努力。