如何从具有20个特征输出的.csv文件中预测输出,应为0和1

时间:2019-04-09 04:51:16

标签: python machine-learning

我有一个具有20个功能的.csv文件,根据这些功能,我想预测.csv文件中每一行的输出将为0或1。

我希望从具有浮点值的其他功能获得输出0或1

1 个答案:

答案 0 :(得分:0)

import sklearn
import pandas as pd
from sklearn import tree
from sklearn import model_selection
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression

df=pd.read_csv('filename.csv')
data = df.values.tolist()
labels = [0,1,0,0,1....... no.of rows times]

x_train,x_test,y_train,y_test=model_selection.train_test_split(data,labels,test_size=0.3,
random_state=42)

使用任何算法(此处为逻辑回归)

clf=LogisticRegression()

clf.fit(x_train,y_train)

print clf.score(x_test,y_test)*100

print clf.predict([.... 20 features values]);