我试图用pytorch复制用tensorflow编写的代码。我在张量流中遇到了一个损失函数softmax_cross_entropy_with_logits。我在pytorch中寻找了一个损失函数,我发现了torch.nn.MultiLabelSoftMarginLoss,尽管我不太确定这是正确的函数。我也不知道如何测量准确性当我使用此损失函数并且网络末端没有relu层时,模型的代码是我的代码:
# GRADED FUNCTION: compute_cost
def compute_cost(Z3, Y):
loss = torch.nn.MultiLabelSoftMarginLoss()
return loss(Z3,Y)
def model(net,X_train, y_train, X_test, y_test, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
optimizer.zero_grad()
total_train_acc=0
for epoch in range(num_epochs):
for i, data in enumerate(train_loader, 0):
running_loss = 0.0
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
Z3 = net(inputs)
# Cost function
cost = compute_cost(Z3, labels)
# Backpropagation: Define the optimizer.
# Use an AdamOptimizer that minimizes the cost.
cost.backward()
optimizer.step()
running_loss += cost.item()
# Measuring the accuracy of minibatch
acc = (labels==Z3).sum()
total_train_acc += acc.item()
#Print every 10th batch of an epoch
if epoch%1 == 0:
print("Cost after epoch {} :
{:.3f}".format(epoch,running_loss/len(train_loader)))
答案 0 :(得分:1)
使用torch.nn.CrossEntropyLoss()
。它结合了softmax和交叉熵。来自文档:
此标准将nn.LogSoftmax()和nn.NLLLoss()合并到一个类中。
示例:
# define loss function
loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
# during training
for (x, y) in train_loader:
model.train()
y_pred = model(x) # your input `torch.FloatTensor`
loss_val = loss_fn(y_pred, y)
print(loss_val.item()) # prints numpy value
optimizer.zero_grad()
loss_val.backward()
optimizer.step()
确保x
和y
的类型正确。通常,转换是这样完成的:loss_fn(y_pred.type(torch.FloatTensor), y.type(torch.LongTensor))
。
要测量准确性,您可以定义一个自定义函数:
def compute_accuracy(y_pred, y):
if list(y_pred.size()) != list(y.size()):
raise ValueError('Inputs have different shapes.',
list(y_pred.size()), 'and', list(y.size()))
result = [1 if y1==y2 else 0 for y1, y2 in zip(y_pred, y)]
return sum(result) / len(result)
并同时使用两者:
model.train()
y_pred = model(x)
loss_val = loss_fn(y_pred.type(torch.FloatTensor), y.type(torch.LongTensor))
_, y_pred = torch.max(y_pred, 1)
accuracy_val = compute_accuracy(y_pred, y)
print(loss_val.item()) # print loss value
print(accuracy_val) # print accuracy value
# update step e.t.c
如果您的输入数据是一次性编码,则可以在使用loss_fn
之前将其转换为常规编码:
_, targets = y.max(dim=1)
y_pred = model(x)
loss_val = loss_fn(y_pred, targets)