在PyTorch中,Tensor的git remote set-url origin git@gitlab.example.com:name.surname/project.git
方法使用提供的索引张量进行求和:
index_add_
前四个子值总和为父[0],后两个子进入父[1],结果为idx = torch.LongTensor([0,0,0,0,1,1])
child = torch.FloatTensor([1, 3, 5, 10, 8, 1])
parent = torch.FloatTensor([0, 0])
parent.index_add_(0, idx, child)
但是,我需要改为tensor([ 19., 9.])
,而API中并不存在。有没有办法有效地做到这一点(无需循环或分配更多内存)?一个(坏的)循环解决方案是:
index_max_
这会产生for i in range(max(idx)+1):
parent[i] = torch.max(child[idx == i])
的预期结果,但速度很慢。
答案 0 :(得分:1)
使用索引的解决方案:
def index_max(child, idx, num_partitions):
# Building a num_partition x num_samples matrix `idx_tiled`:
partition_idx = torch.range(0, num_partitions - 1, dtype=torch.long)
partition_idx = partition_idx.view(-1, 1).expand(num_partitions, idx.shape[0])
idx_tiled = idx.view(1, -1).repeat(num_partitions, 1)
idx_tiled = (idx_tiled == partition_idx).float()
# i.e. idx_tiled[i,j] == 1 if idx[j] == i, else 0
parent = idx_tiled * child
parent, _ = torch.max(parent, dim=1)
return parent
基准:
import timeit
setup = '''
import torch
def index_max_v0(child, idx, num_partitions):
parent = torch.zeros(num_partitions)
for i in range(max(idx) + 1):
parent[i] = torch.max(child[idx == i])
return parent
def index_max(child, idx, num_partitions):
# Building a num_partition x num_samples matrix `idx_tiled`
# containing for each row indices of
partition_idx = torch.range(0, num_partitions - 1, dtype=torch.long)
partition_idx = partition_idx.view(-1, 1).expand(num_partitions, idx.shape[0])
idx_tiled = idx.view(1, -1).repeat(num_partitions, 1)
idx_tiled = (idx_tiled == partition_idx).float()
parent = idx_tiled * child
parent, _ = torch.max(parent, dim=1)
return parent
idx = torch.LongTensor([0,0,0,0,1,1])
child = torch.FloatTensor([1, 3, 5, 10, 8, 1])
num_partitions = torch.unique(idx).shape[0]
'''
print(min(timeit.Timer('index_max_v0(child, idx, num_partitions)', setup=setup).repeat(5, 1000)))
# > 0.05308796599274501
print(min(timeit.Timer('index_max(child, idx, num_partitions)', setup=setup).repeat(5, 1000)))
# > 0.024736385996220633