我想将预训练模型中的相同变量加载到新模型中的多个变量
mydate = "11/11/2019"
new Date("11/11/2019").toISOString()
和后记
v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
inc_v1 = v1.assign(v1+1)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(v1)
with tf.Session() as sess:
sess.run(init_op)
sess.run(v1+1)
save_path = saver.save(sess, "/tmp/model.ckpt")
也就是说,我希望两个变量都可以从先前模型的v1变量中初始化。
下面的示例崩溃了,因为它说图形是不同的。
答案 0 :(得分:1)
Evaluate the assigned value of the variable from the original graph and then initialize new variables from new graph with this value:
import tensorflow as tf
with tf.Graph().as_default():
# the variable from the original graph
v0 = tf.Variable(tf.random_normal([2, 2]))
with tf.Session(graph=v0.graph) as sess:
sess.run(v0.initializer)
init_val = v0.eval() # <-- evaluate the assigned value
print('original graph:')
print(init_val)
# original graph:
# [[-1.7466899 1.1560178 ]
# [-0.46535382 1.7059366 ]]
# variables from new graph
with tf.Graph().as_default():
v1 = tf.Variable(init_val) # <-- variable from new graph
v2 = tf.Variable(init_val) # <-- variable from new graph
with tf.Session(graph=v1.graph) as sess:
sess.run([v.initializer for v in [v1, v2]])
print('new graph:')
print(v1.eval())
print(v2.eval())
# new graph:
# [[-1.7466899 1.1560178 ]
# [-0.46535382 1.7059366 ]]
# [[-1.7466899 1.1560178 ]
# [-0.46535382 1.7059366 ]]
答案 1 :(得分:0)
Here's another method, iterating the variables from the previous graph:
def load_pretrained(sess):
checkpoint_path = 'pretrainedmodel.ckpt'
vars_to_load = [var for var in tf.get_collection(tf.GraphKeys.VARIABLES) if
("some_scope" in var.op.name)]
assign_ops = []
reader = tf.contrib.framework.load_checkpoint(checkpoint_path)
for var in vars_to_load:
for name,shape in tf.contrib.framework.list_variables(checkpoint_path):
if(var.op.name ~some regex comperison~ name):
assign_ops.append(tf.assign(var,reader.get_tensor(name)))
break
sess.run(assign_ops)