我正在尝试训练灰色图像。 batch_size = 32, image size = (48*48)
。
我定义了我的网络input_shape = (48,48,1)
。训练网络时,我收到类似以下的错误。
错误:
ValueError:检查输入时出错:预期conv2d_17_input具有4维,但数组的形状为(32,48,48)
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu',
input_shape=(48,48,1)
)
)
答案 0 :(得分:1)
假设您有1000
个训练图像,其中每个图像均为48x48
灰度。将图像加载到numpy数组中后,您将得到形状为(1000, 48, 48)
。
这实际上意味着您在数组中有1000
个元素,每个元素都是一个48x48
矩阵。
现在,为了提供此数据以训练CNN
,您必须将此列表重塑为(1000, 48, 48, 1)
,其中1
代表渠道维度。由于您具有灰度图像,因此必须使用1
。如果是RGB,它将为3
。
考虑下面给出的玩具示例,
x_train = np.random.rand(1000, 48, 48) #images
y_train = np.array([np.random.randint(0, 2) for x in range(1000)]) # labels
# simple model
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu',
input_shape=(48,48,1)
)
)
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam')
# fitting model
model.fit(x_train, y_train, epochs=10, batch_size=32)
这将引发错误
检查输入时出错:预期conv2d_3_input具有4维,但数组的形状为(1000,48,48)
要解决此问题,应像这样x_train
重新塑形
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
现在拟合模型,
model.fit(x_train, y_train, epochs=10, batch_size=32)
Epoch 1/10
1000/1000 [==============================] - 1s 1ms/step - loss: 0.7177
Epoch 2/10
1000/1000 [==============================] - 1s 882us/step - loss: 0.6762
Epoch 3/10
1000/1000 [==============================] - 1s 870us/step - loss: 0.5882
Epoch 4/10
1000/1000 [==============================] - 1s 888us/step - loss: 0.4588
Epoch 5/10
1000/1000 [==============================] - 1s 906us/step - loss: 0.3272
Epoch 6/10
1000/1000 [==============================] - 1s 910us/step - loss: 0.2228
Epoch 7/10
1000/1000 [==============================] - 1s 895us/step - loss: 0.1607
Epoch 8/10
1000/1000 [==============================] - 1s 879us/step - loss: 0.1172
Epoch 9/10
1000/1000 [==============================] - 1s 886us/step - loss: 0.0935
Epoch 10/10
1000/1000 [==============================] - 1s 888us/step - loss: 0.0638
答案 1 :(得分:0)
即使输入是灰度,您的输入也应具有4个尺寸。因此,您可以使用np.reshape(input,(32,48,48,1))
或np.expand_dims(input,axis=3)
。
答案 2 :(得分:0)
您的图片应重塑为// xml config
<context:annotation-config/>
<beans>
// use the primary tag here too! in order to say this the primary bean
// this only works when there are only two implementations of the same interface
<bean id="bike" primary="true" class="your_pkg_route.Bike"/>
<bean id="car" class="your_pkg_route.Car"/>
<bean autowire="byName" class="your_pkg_route.VehicleService"/>
<beans>
</context:annotation-config>
// VehicleService
@Component
public class VehicleService {
private Vehicle bike; // call attribute 'bike' so it is autowired by its name
public void service() {
//...
}
}
,而您的(sample_length, 48, 48, 1)
input_shape = (48, 48, 1)
您可以查看MNIST示例here,它与您的情况类似。