我有形状为(n,128,128,3)
,标签为(n,10,2)
的128x128 RGB图像。
这是我的神经网络代码:
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import InputLayer
from tensorflow.python.keras.layers import MaxPooling2D
from tensorflow.python.keras.layers import Conv2D, Dense, Flatten
from tensorflow.python.keras.optimizers import Adam
from data_gen import gen_dataset
data, labels = gen_dataset(10)
test_data, test_labels = gen_dataset(10)
model = Sequential()
print(data.shape) # (10, 128, 128, 3)
print(labels.shape) # (10, 10, 2)
model.add(InputLayer(input_shape=(128, 128, 3)))
model.add(Conv2D(kernel_size=5, strides=1, filters=32, padding='same', activation='relu', name='conv1'))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Conv2D(kernel_size=5, strides=1, filters=64, padding='same', activation='relu', name='conv2'))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Conv2D(kernel_size=5, strides=1, filters=64, padding='same', activation='relu', name='conv3'))
model.add(MaxPooling2D(pool_size=2, strides=2))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(2, activation='softmax'))
optimizer = Adam(lr=1e-3)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x=data, y=labels, epochs=5, batch_size=5)
result = model.evaluate(x=test_data, y=test_labels)
print('\n\nAccuracy:', result[1])
如果我运行它,则会收到错误ValueError: Error when checking target: expected dense_3 to have 2 dimensions, but got array with shape (10, 10, 2)
我知道存在与此类似的问题,但是这些问题尚未回答我的问题。 我尝试改变第一个密集层神经元的数量,尝试添加更多的最大池和转换层,但这些都没有解决。
答案 0 :(得分:0)
model.add(Dense(2, activation='softmax'))
model.add(Dense(10, activation='softmax'))
因为你有十节课。