感谢您查看我的问题。我使用BeautifulSoup和Pandas创建了一个脚本,该脚本从美联储网站上的预测中抓取数据。投影每季度(〜3个月)出现一次。我想编写一个脚本来创建每日时间序列,并每天检查一次美联储网站,如果发布了新的预测,该脚本会将其添加到时间序列中。如果没有更新,则脚本将只是将时间序列附加到最后一个有效的,更新的投影上。
从我的最初挖掘来看,似乎有一些外部资源可以每天用来“触发”脚本,但是我宁愿将所有内容都保留为纯python。
我为完成抓取而编写的代码如下:
from bs4 import BeautifulSoup
import requests
import re
import wget
import pandas as pd
# Starting url and the indicator (key) for links of interest
url = "https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm"
key = '/monetarypolicy/fomcprojtabl'
# Cook the soup
page = requests.get(url)
data = page.text
soup = BeautifulSoup(data)
# Create the tuple of links for projection pages
projections = []
for link in soup.find_all('a', href=re.compile(key)):
projections.append(link["href"])
# Create a tuple to store the projections
decfcasts = []
for i in projections:
url = "https://www.federalreserve.gov{}".format(i)
file = wget.download(url)
df_list = pd.read_html(file)
fcast = df_list[-1].iloc[:,0:2]
fcast.columns = ['Target', 'Votes']
fcast.fillna(0, inplace = True)
decfcasts.append(fcast)
到目前为止,我编写的代码将所有内容都放在一个元组中,但是该数据没有时间/日期索引。我一直在考虑编写伪代码,我想它看起来像
Create daily time series object
for each day in time series:
if day in time series = day in link:
run webscraper
other wise, append time series with last available observation
至少,这就是我的想法。最终的时间序列最终可能看起来相当“笨拙”,因为会有很多天都具有相同的观测值,然后当出现新的预测时,将出现“跳跃”,然后是更多重复直到下一个投影出来。
很明显,任何帮助都将不胜感激。无论哪种方式,都要提前谢谢!
答案 0 :(得分:1)
我已经为您编辑了代码。现在,它从url获取日期。日期在数据框中保存为期间。仅当数据帧中不存在日期(从泡菜还原)时,才会处理并附加日期。
from bs4 import BeautifulSoup
import requests
import re
import wget
import pandas as pd
# Starting url and the indicator (key) for links of interest
url = "https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm"
key = '/monetarypolicy/fomcprojtabl'
# Cook the soup
page = requests.get(url)
data = page.text
soup = BeautifulSoup(data)
# Create the tuple of links for projection pages
projections = []
for link in soup.find_all('a', href=re.compile(key)):
projections.append(link["href"])
# past results from pickle, when no pickle init empty dataframe
try:
decfcasts = pd.read_pickle('decfcasts.pkl')
except FileNotFoundError:
decfcasts = pd.DataFrame(columns=['target', 'votes', 'date'])
for i in projections:
# parse date from url
date = pd.Period(''.join(re.findall(r'\d+', i)), 'D')
# process projection if it wasn't included in data from pickle
if date not in decfcasts['date'].values:
url = "https://www.federalreserve.gov{}".format(i)
file = wget.download(url)
df_list = pd.read_html(file)
fcast = df_list[-1].iloc[:, 0:2]
fcast.columns = ['target', 'votes']
fcast.fillna(0, inplace=True)
# set date time
fcast.insert(2, 'date', date)
decfcasts = decfcasts.append(fcast)
# save to pickle
pd.to_pickle(decfcasts, 'decfcasts.pkl')