我正在重写一些旧代码,以使用新型的参数表示形式。旧版本使用矩阵表示参数,而新版本使用List
和arma::fcube
。我只有在从另一个函数中多次调用该函数时才能观察到性能下降:
旧功能ConditionalProbs
比新功能conditional_probabilities
慢2倍。另一方面,multiple_times_old
(多次调用ConditionalProbs
)比multiple_times_new
快4倍,即使此功能之间唯一的区别就是多次调用。>
我为长代码表示歉意:这是我的旧代码(请注意,我使用的是NumericMatrix
,但确实通过在新代码上更改IntegerMatrix
来提高了速度)
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
NumericVector ConditionalProbs(NumericMatrix X, IntegerVector position, int C, NumericMatrix cMat, NumericMatrix vMat, NumericVector V) {
int n = X.nrow(); int m = X.ncol();
int n_neighbors = cMat.nrow();
int x = position[0] -1; int y = position[1] -1;
int neix, neiy;
NumericVector p(C + 1);
IntegerVector vals = seq_len(C+1) - 1;
double U;
int dif;
for(int value = 0; value <= C; value++){
U = V[value];
for(int ne=0; ne < n_neighbors; ne++){
neix = x + cMat(ne,0); neiy = y + cMat(ne,1);
if(neix < n && neix >=0 && neiy < m && neiy>=0){
dif = X(neix,neiy) - vals[value] ;
U = U + vMat(ne,dif+C);
}
}
p[value] = exp(U);
}
p = p/sum(p);
return(p);
}
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
NumericMatrix multiple_times_old(NumericMatrix X, NumericMatrix cMat, NumericMatrix vMat, NumericVector V, int C, int n_times){
NumericVector probability;
int N = X.nrow(); int M = X.ncol();
int x,y;
IntegerVector position(2);
for(int i = 0; i < n_times; i++){
x = 2;
y = 2;
position[0] = x; position[1] = y;
probability = ConditionalProbs(X, position, C, cMat, vMat, V);
}
return(X);
}
现在的新版本是:
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
NumericVector conditional_probabilities(IntegerMatrix X, IntegerVector position, List R, arma::fcube theta){
int n_neighbors = theta.n_rows;
int C = theta.n_cols - 1;
int x = position[0] - 1; int y = position[1] - 1;
int N = X.nrow(); int M = X.ncol();
IntegerVector this_pos;
NumericVector probs(C+1);
float this_prob;
int dx, dy;
for(int value = 0; value <= C; value++){
this_prob = 0;
for(int i = 0; i < n_neighbors; i++){
this_pos = as<IntegerVector>(R[i]);
dx = this_pos[0]; dy = this_pos[1];
if(0 <= x+dx && x+dx < N && 0 <= y+dy && y+dy < M){
this_prob = this_prob + theta(i, value, X(x+dx, y+dy));}
//if(0 <= x-dx && x-dx < N && 0 <= y-dy && y-dy < M){
// this_prob = this_prob + theta(i, X(x-dx, y-dy), value);}
}
probs[value] = exp(this_prob);
}
return(probs/sum(probs));
}
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
IntegerMatrix multiple_times_new(IntegerMatrix X, List R, arma::fcube theta, int n_times){
NumericVector probability;
int N = X.nrow(); int M = X.ncol();
int x,y;
IntegerVector position(2);
for(int i = 0; i < n_times; i++){
x = 2;
y = 2;
position[0] = x; position[1] = y;
probability = conditional_probabilities(X, position, R, theta);
}
return(X);
}
我编写了基准测试功能:
library(Rcpp)
sourceCpp("bench.cpp") #All the c++ functions are on this file
# parameters for old functions
cMat <- matrix(c(1,0,0,1), nrow = 2, byrow = TRUE)
vMat <- matrix(c(-1,-1,-1,-1,1,-1,-1,-1,-1,
-1,-1,-1,-1,1,-1,-1,-1,-1), nrow = 2, byrow = TRUE)
vMat <- rbind(vMat, vMat) + 0.0
cMat <- rbind(cMat, -cMat)
V <- rep(0.0,5)
# parameters for new functions
R <- list(c(1L,0L), c(0L,1L), c(-1L,0L), c(0L, -1L))
theta <- array(0, c(4,5,5))
theta[1,,] <- theta[2,,] <- theta[3,,] <- theta[4,,] <- diag(rep(2,5)) - 1.0
X <- matrix(sample(0:4,64*64, replace = TRUE), nrow = 64)
library(rbenchmark)
benchmark(ConditionalProbs = ConditionalProbs(X, c(30,30), 4, cMat, vMat, V),
conditional_probabilities = conditional_probabilities(X, c(30,30), R, theta),
replications = 50000)[ ,c("test", "relative","elapsed", "replications")]
test relative elapsed replications
2 conditional_probabilities 1.000 0.314 50000
1 ConditionalProbs 1.538 0.483 50000
benchmark(multiple_times_old = multiple_times_old(X, cMat2, vMat2, V, 4, 50000),
multiple_times_new = multiple_times_new(X, R, theta, 50000),
replications = 10)[ ,c("test", "relative", "elapsed", "replications")]
test relative elapsed replications
2 multiple_times_new 4.359 0.959 10
1 multiple_times_old 1.000 0.220 10
如果第一个调用的函数比第二个调用的函数快,为什么multiple_times_new
比multiple_times_old
慢?