我想生成一个具有5倍交叉验证的Precision-Recall曲线,该曲线显示了example ROC curve code here中的标准偏差。
以下代码(改编自How to Plot PR-Curve Over 10 folds of Cross Validation in Scikit-Learn)给出了交叉验证的每一折的PR曲线以及平均PR曲线。我还想用灰色显示平均PR曲线上方和下方的一个标准偏差区域。但这会产生以下错误(代码下方的链接中的详细信息):
ValueError: operands could not be broadcast together with shapes (91,) (78,)
import matplotlib.pyplot as plt
import numpy
from sklearn.datasets import make_blobs
from sklearn.metrics import precision_recall_curve, auc
from sklearn.model_selection import KFold
from sklearn.svm import SVC
X, y = make_blobs(n_samples=500, n_features=2, centers=2, cluster_std=10.0,
random_state=10)
k_fold = KFold(n_splits=5, shuffle=True, random_state=10)
predictor = SVC(kernel='linear', C=1.0, probability=True, random_state=10)
y_real = []
y_proba = []
precisions, recalls = [], []
for i, (train_index, test_index) in enumerate(k_fold.split(X)):
Xtrain, Xtest = X[train_index], X[test_index]
ytrain, ytest = y[train_index], y[test_index]
predictor.fit(Xtrain, ytrain)
pred_proba = predictor.predict_proba(Xtest)
precision, recall, _ = precision_recall_curve(ytest, pred_proba[:,1])
lab = 'Fold %d AUC=%.4f' % (i+1, auc(recall, precision))
plt.plot(recall, precision, alpha=0.3, label=lab)
y_real.append(ytest)
y_proba.append(pred_proba[:,1])
precisions.append(precision)
recalls.append(recall)
y_real = numpy.concatenate(y_real)
y_proba = numpy.concatenate(y_proba)
precision, recall, _ = precision_recall_curve(y_real, y_proba)
lab = 'Overall AUC=%.4f' % (auc(recall, precision))
plt.plot(recall, precision, lw=2,color='red', label=lab)
std_precision = np.std(precisions, axis=0)
tprs_upper = np.minimum(precisions[median] + std_precision, 1)
tprs_lower = np.maximum(precisions[median] - std_precision, 0)
plt.fill_between(recall_overall, upper_precision, lower_precision, alpha=0.5, linewidth=0, color='grey')
Error reported and Plot generated
您能建议我如何添加到以下代码中,以在平均PR曲线周围显示一个标准偏差吗?
答案 0 :(得分:0)
我有一个可行的解决方案,但是如果有人可以评论它是否在做正确的事情,这将很有帮助。预先感谢!
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.metrics import precision_recall_curve, auc
from sklearn.model_selection import KFold
from sklearn.svm import SVC
from numpy import interp
X, y = make_blobs(n_samples=500, n_features=2, centers=2, cluster_std=10.0,
random_state=10)
k_fold = KFold(n_splits=5, shuffle=True, random_state=10)
predictor = SVC(kernel='linear', C=1.0, probability=True, random_state=10)
y_real = []
y_proba = []
precision_array = []
threshold_array=[]
recall_array = np.linspace(0, 1, 100)
for i, (train_index, test_index) in enumerate(k_fold.split(X)):
Xtrain, Xtest = X[train_index], X[test_index]
ytrain, ytest = y[train_index], y[test_index]
predictor.fit(Xtrain, ytrain)
pred_proba = predictor.predict_proba(Xtest)
precision_fold, recall_fold, thresh = precision_recall_curve(ytest, pred_proba[:,1])
precision_fold, recall_fold, thresh = precision_fold[::-1], recall_fold[::-1], thresh[::-1] # reverse order of results
thresh = np.insert(thresh, 0, 1.0)
precision_array = interp(recall_array, recall_fold, precision_fold)
threshold_array = interp(recall_array, recall_fold, thresh)
pr_auc = auc(recall_array, precision_array)
lab_fold = 'Fold %d AUC=%.4f' % (i+1, pr_auc)
plt.plot(recall_fold, precision_fold, alpha=0.3, label=lab_fold)
y_real.append(ytest)
y_proba.append(pred_proba[:,1])
y_real = numpy.concatenate(y_real)
y_proba = numpy.concatenate(y_proba)
precision, recall, _ = precision_recall_curve(y_real, y_proba)
lab = 'Overall AUC=%.4f' % (auc(recall, precision))
plt.plot(recall, precision, lw=2,color='red', label=lab)
plt.legend(loc='lower left', fontsize='small')
mean_precision = np.mean(precision_array)
std_precision = np.std(precision_array)
plt.fill_between(recall, precision + std_precision, precision - std_precision, alpha=0.3, linewidth=0, color='grey')
plt.show()
答案 1 :(得分:0)
尽管在正确的方向上,@user1886130 的答案并不完全正确,因为变量 precision_array
在循环内的每次迭代中都会被覆盖。
更干净和正确的版本是:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.metrics import precision_recall_curve, auc
from sklearn.model_selection import KFold
from sklearn.svm import SVC
X, y = make_blobs(n_samples=500, n_features=2, centers=2, cluster_std=10.0, random_state=10)
k_fold = KFold(n_splits=5, shuffle=True, random_state=10)
predictor = SVC(kernel='linear', C=1.0, probability=True, random_state=10)
y_real = []
y_proba = []
precision_array = []
recall_array = np.linspace(0, 1, 100)
for i, (train_index, test_index) in enumerate(k_fold.split(X)):
Xtrain, Xtest = X[train_index], X[test_index]
ytrain, ytest = y[train_index], y[test_index]
predictor.fit(Xtrain, ytrain)
pred_proba = predictor.predict_proba(Xtest)
precision_fold, recall_fold, _ = precision_recall_curve(ytest, pred_proba[:, 1])
precision_fold, recall_fold = precision_fold[::-1], recall_fold[::-1] # reverse order of results
prec_array = np.interp(recall_array, recall_fold, precision_fold)
pr_auc = auc(recall_array, prec_array)
precision_array.append(prec_array)
lab_fold = 'Fold %d AUC=%.4f' % (i+1, pr_auc)
plt.plot(recall_fold, precision_fold, alpha=0.3, label=lab_fold)
y_real.append(ytest)
y_proba.append(pred_proba[:, 1])
y_real = np.concatenate(y_real)
y_proba = np.concatenate(y_proba)
precision, recall, _ = precision_recall_curve(y_real, y_proba)
lab = 'Overall AUC=%.4f' % (auc(recall, precision))
plt.plot(recall, precision, lw=2, color='red', label=lab)
plt.legend(loc='lower left', fontsize='small')
mean_precision = np.mean(precision_array, axis=0)
std_precision = np.std(precision_array, axis=0)
plt.fill_between(recall_array, mean_precision + std_precision, mean_precision - std_precision, alpha=0.3, linewidth=0, color='grey')
plt.title("PR curves; {} folds".format(k_fold.n_splits), weight="bold", fontsize=15)
plt.show()