假设我有这种情况:
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
kfold = model_selection.KFold(n_splits=5, random_state=7)
acc_per_fold = model_selection.cross_val_score(LogisticRegression(),
x_inputs, np.ravel(y_response), cv=kfold, scoring='accuracy')
我还能从model_selection.cross_val_score()
得到什么?有没有办法查看每个实际折痕内部发生的情况?我可以每折获得精确召回率吗?预测值?如何从训练有素的模型中对看不见的数据进行预测呢?
答案 0 :(得分:4)
您可以使用xtrainnorm = normalizer.transform(xtrain)
xtestnorm = normalizer.transform(Xtest)
函数查看每折的情况。
cross_validate
输出如下,
import numpy as np
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_validate
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, recall_score, roc_auc_score, precision_score
X, y = make_classification(
n_classes=2, class_sep=1.5, weights=[0.9, 0.1],
n_features=20, n_samples=1000, random_state=10
)
clf = LogisticRegression(class_weight="balanced")
scoring = {'accuracy': 'accuracy',
'recall': 'recall',
'precision': 'precision',
'roc_auc': 'roc_auc'}
cross_val_scores = cross_validate(clf, X, y, cv=3, scoring=scoring)
那第一折发生了什么?
{'fit_time': array([ 0. , 0. , 0.01559997]),
'score_time': array([ 0.01559997, 0. , 0. ]),
'test_accuracy': array([ 0.9251497 , 0.95808383, 0.93674699]),
'test_precision': array([ 0.59183673, 0.70833333, 0.63636364]),
'test_recall': array([ 0.85294118, 1. , 0.84848485]),
'test_roc_auc': array([ 0.96401961, 0.99343137, 0.96787271]),
'train_accuracy': array([ 0.96096096, 0.93693694, 0.95209581]),
'train_precision': array([ 0.73033708, 0.62376238, 0.69148936]),
'train_recall': array([ 0.97014925, 0.94029851, 0.95588235]),
'train_roc_auc': array([ 0.99426906, 0.98509954, 0.99223039])}
FOLD, METRIC = (0, 'test_precision')
cross_val_scores[METRIC][FOLD]
稳定吗?
precision score