我必须在R中创建一个函数(或循环)以检测超频率。 检测高频率的要求是在180天内达到3次,如果满足该要求,则该人将是高频率的,不仅是在将来,而且在过去不符合高频率要求的探视中也是
pacient <- c(10,10,10,10,10,11,11,12,12,12,13, 13, 15, 14); pacient
date <- as.Date(c("01/01/2018","02/05/2018", "04/06/2018", "10/11/2018", "05/12/2018", "02/01/2018", "06/08/2018", "01/01/2018", "03/01/2018", "06/03/2018", "05/08/2018", "05/08/2019", "05/07/2019", "08/07/2017"), format = "%d/%m/%Y"); date
DF <- data.frame(pacient, date); DF
count_visit <- function(x){
DF <- data.table(DF)
DTord<-DF[with(DF , order(DF $ date)), ]; DTord
DTord[,num_visit := order(date), by = pacient];DTord
DTordID <- DTord[with(DTord, order(DTord$pacient)), ]; DTordID
DTordID[,max_visit := max(num_visit), by = pacient];DTordID
framedatos <- as.data.frame(DTordID)
return(framedatos)}
REUP_visit <- count_visit(DF); head(REUP_visit)
pacient date num_visit max_visit
10 01/01/2018 1 5
10 02/05/2018 2 5
10 04/06/2018 3 5
10 10/11/2018 4 5
10 05/12/2018 5 5
11 02/01/2018 1 2
11 06/08/2018 2 2
12 01/01/2018 1 3
12 03/01/2018 2 3
12 06/03/2018 3 3
13 05/08/2018 1 2
13 05/08/2019 2 2
14 08/07/2017 1 1
15 05/07/2019 1 1
到目前为止,我仅设法创建了一个函数,该函数可以告诉我每位患者的就诊次数以及患者的最大就诊次数(这是我需要的其他功能):
pacient date num_visit max_visit days_visit <180 future_hyperf past_hyperf
10 01/01/2018 1 5 0 1 no yes
10 02/05/2018 2 5 121 2 no yes
10 04/06/2018 3 5 33 3 yes yes
10 10/11/2018 4 5 159 4 yes yes
10 05/12/2018 5 5 25 5 yes yes
11 02/01/2018 1 2 0 1 no no
11 06/08/2018 2 2 216 1 no no
12 01/01/2018 1 3 0 1 no yes
12 03/01/2018 2 3 2 2 no yes
12 06/03/2018 3 3 62 3 yes yes
13 05/08/2018 1 2 0 1 no no
13 05/08/2019 2 2 365 1 no no
14 08/07/2017 1 1 0 1 no no
15 05/07/2019 1 1 0 1 no no
我需要的输出是以下内容:“ day_visit”,“ <180”,“ future_hyperf”和“ past_hyperf”。
变量“ day_visit”的目的是将患者首次访问急诊室的次数设为0,然后计算两次就诊之间的天数。
DF <- DF %>%
group_by(pacient) %>%
arrange(date) %>%
mutate(days_visit= date - lag(date, default = first(date)))
变量“ <180”将是第一次出现数字1,第二次是2(如果以前访问是<180天),3(如果第一次访问是<180天) ) 等等 。例如,如果患者达到2岁而第三次就诊不满足<180天,则有必要再次放置1个(循环将重新开始)。
变量“ future_hyperf”表示是或否。一旦患者的变量<180达到3,就标记为将来。如果就诊时间晚于180天且不符合要求,则无所谓。一旦满足标准,它将永远存在。
变量“ past_hyperf”会将所有在变量“ future_hyperf”中拥有的患者也转换为过去的患者。
谢谢!
解决方案
DF3 <- DF %>%
arrange(pacient, date) %>%
group_by(pacient) %>%
mutate(days_visit = as.integer(date - lag(date, default = first(date))) ,
less_180 = days_visit < 180) %>%
mutate(counter = rowid(pacient, cumsum(date - shift(date, fill=first(date)) > 180)),
future_hyperf = case_when(counter >= 3 ~ "yes",
TRUE ~ "no"),
past_hyperf = case_when(max(counter, na.rm = T) >= 3 ~ "yes",
TRUE ~ "no"))
DF3 <- DF3[with(DF3,order(pacient,date)),]
答案 0 :(得分:0)
这就是我要怎么做。解释在注释中。
library(tidyverse)
DF %>%
group_by(pacient) %>% # group the data by "pacient"
mutate(lag_date = lag(date, n = 2)) %>% # create the variable of lag dates by 2 visits
mutate(date_diff = as.integer(date - lag_date)) %>% # Calculate the difference in dates
mutate(date_diff = case_when(is.na(date_diff) ~ 9999L, # replace NAs with 999 (cummin does not allow na.rm)
TRUE ~ date_diff)) %>% #
mutate(min_period = cummin(date_diff)) %>% # calculate the cumulative minimum of the differencce
mutate(future_hyperf = min_period < 180) %>% # check the cumulative min is less than 180
mutate(past_hyperf = min(min_period) < 180) %>%
ungroup()
## # A tibble: 14 x 7
## pacient date lag_date date_diff min_period future_hyperf past_hyperf
## <dbl> <date> <date> <int> <int> <lgl> <lgl>
## 1 10 2018-01-01 NA 9999 9999 FALSE TRUE
## 2 10 2018-05-02 NA 9999 9999 FALSE TRUE
## 3 10 2018-06-04 2018-01-01 154 154 TRUE TRUE
## 4 10 2018-11-10 2018-05-02 192 154 TRUE TRUE
## 5 10 2018-12-05 2018-06-04 184 154 TRUE TRUE
## 6 11 2018-01-02 NA 9999 9999 FALSE FALSE
## 7 11 2018-08-06 NA 9999 9999 FALSE FALSE
## 8 12 2018-01-01 NA 9999 9999 FALSE TRUE
## 9 12 2018-01-03 NA 9999 9999 FALSE TRUE
## 10 12 2018-03-06 2018-01-01 64 64 TRUE TRUE
## 11 13 2018-08-05 NA 9999 9999 FALSE FALSE
## 12 13 2019-08-05 NA 9999 9999 FALSE FALSE
## 13 15 2019-07-05 NA 9999 9999 FALSE FALSE
## 14 14 2017-07-08 NA 9999 9999 FALSE FALSE
答案 1 :(得分:0)
尝试一下:
log.info("LogData Object::::::{}", StructuredArguments.keyValue("LogData", data));
希望有帮助