我想知道,是否有可能在运行时使用通过撤回和断言修改的知识库在Prolog中进行计划?
我的想法如下:假设我需要更换汽车的flat胎。我既可以将东西放在地面上,也可以将东西从地面上移到某个自由的地方。
所以我想出了这样的代码:
at(flat, axle).
at(spare, trunk).
free(Where) :- at(_, Where), !, fail.
remove(What) :- at(What, _), retract(at(What, _)), assert(at(What, ground)).
put_on(What, Where) :- at(What, _), free(Where), retract(at(What, _)), assert(at(What, Where)).
(我是Prolog的新秀,所以也许这是错误的,如果是这样,请告诉我如何纠正它。)
这个想法是:我的车轴上有一个漏气的轮胎,而后备箱中有一个备用轮胎。如果X在某处,我可以将其删除,然后删除它,删除指定该位置的事实并添加一个在地面上的事实。同样,如果X在某处并且Y是自由的,我可以将事物X放置在位置Y上,为此,我将X从其所在的位置删除,并添加X在Y的事实。
现在我陷入了困境:我不知道现在如何使用此代码,因为at(spare, axle)
只是说不,即使是跟踪也是如此。
问题是:可以使用这种方法吗?如果可以,怎么使用?
我希望这是有道理的。
答案 0 :(得分:1)
使用George F Luger(WorldCat)的“人工智能-解决复杂问题的结构和策略”中的示例代码
%%%
%%% This is one of the example programs from the textbook:
%%%
%%% Artificial Intelligence:
%%% Structures and strategies for complex problem solving
%%%
%%% by George F. Luger and William A. Stubblefield
%%%
%%% Corrections by Christopher E. Davis (chris2d@cs.unm.edu)
%%%
%%% These programs are copyrighted by Benjamin/Cummings Publishers.
%%%
%%% We offer them for use, free of charge, for educational purposes only.
%%%
%%% Disclaimer: These programs are provided with no warranty whatsoever as to
%%% their correctness, reliability, or any other property. We have written
%%% them for specific educational purposes, and have made no effort
%%% to produce commercial quality computer programs. Please do not expect
%%% more of them then we have intended.
%%%
%%% This code has been tested with SWI-Prolog (Multi-threaded, Version 5.2.13)
%%% and appears to function as intended.
%%%%%%%%%%%%%%%%%%%% stack operations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These predicates give a simple, list based implementation of stacks
% empty stack generates/tests an empty stack
member(X,[X|_]).
member(X,[_|T]):-member(X,T).
empty_stack([]).
% member_stack tests if an element is a member of a stack
member_stack(E, S) :- member(E, S).
% stack performs the push, pop and peek operations
% to push an element onto the stack
% ?- stack(a, [b,c,d], S).
% S = [a,b,c,d]
% To pop an element from the stack
% ?- stack(Top, Rest, [a,b,c]).
% Top = a, Rest = [b,c]
% To peek at the top element on the stack
% ?- stack(Top, _, [a,b,c]).
% Top = a
stack(E, S, [E|S]).
%%%%%%%%%%%%%%%%%%%% queue operations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These predicates give a simple, list based implementation of
% FIFO queues
% empty queue generates/tests an empty queue
empty_queue([]).
% member_queue tests if an element is a member of a queue
member_queue(E, S) :- member(E, S).
% add_to_queue adds a new element to the back of the queue
add_to_queue(E, [], [E]).
add_to_queue(E, [H|T], [H|Tnew]) :- add_to_queue(E, T, Tnew).
% remove_from_queue removes the next element from the queue
% Note that it can also be used to examine that element
% without removing it
remove_from_queue(E, [E|T], T).
append_queue(First, Second, Concatenation) :-
append(First, Second, Concatenation).
%%%%%%%%%%%%%%%%%%%% set operations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These predicates give a simple,
% list based implementation of sets
% empty_set tests/generates an empty set.
empty_set([]).
member_set(E, S) :- member(E, S).
% add_to_set adds a new member to a set, allowing each element
% to appear only once
add_to_set(X, S, S) :- member(X, S), !.
add_to_set(X, S, [X|S]).
remove_from_set(_, [], []).
remove_from_set(E, [E|T], T) :- !.
remove_from_set(E, [H|T], [H|T_new]) :-
remove_from_set(E, T, T_new), !.
union([], S, S).
union([H|T], S, S_new) :-
union(T, S, S2),
add_to_set(H, S2, S_new).
intersection([], _, []).
intersection([H|T], S, [H|S_new]) :-
member_set(H, S),
intersection(T, S, S_new),!.
intersection([_|T], S, S_new) :-
intersection(T, S, S_new),!.
set_diff([], _, []).
set_diff([H|T], S, T_new) :-
member_set(H, S),
set_diff(T, S, T_new),!.
set_diff([H|T], S, [H|T_new]) :-
set_diff(T, S, T_new), !.
subset([], _).
subset([H|T], S) :-
member_set(H, S),
subset(T, S).
equal_set(S1, S2) :-
subset(S1, S2), subset(S2, S1).
%%%%%%%%%%%%%%%%%%%%%%% priority queue operations %%%%%%%%%%%%%%%%%%%
% These predicates provide a simple list based implementation
% of a priority queue.
% They assume a definition of precedes for the objects being handled
empty_sort_queue([]).
member_sort_queue(E, S) :- member(E, S).
insert_sort_queue(State, [], [State]).
insert_sort_queue(State, [H | T], [State, H | T]) :-
precedes(State, H).
insert_sort_queue(State, [H|T], [H | T_new]) :-
insert_sort_queue(State, T, T_new).
remove_sort_queue(First, [First|Rest], Rest).
%%%%%%%%% Simple Prolog Planner %%%%%%%%
%%%
%%% This is one of the example programs from the textbook:
%%%
%%% Artificial Intelligence:
%%% Structures and strategies for complex problem solving
%%%
%%% by George F. Luger and William A. Stubblefield
%%%
%%% Corrections by Christopher E. Davis (chris2d@cs.unm.edu)
%%%
%%% These programs are copyrighted by Benjamin/Cummings Publishers.
%%%
%%% We offer them for use, free of charge, for educational purposes only.
%%%
%%% Disclaimer: These programs are provided with no warranty whatsoever as to
%%% their correctness, reliability, or any other property. We have written
%%% them for specific educational purposes, and have made no effort
%%% to produce commercial quality computer programs. Please do not expect
%%% more of them then we have intended.
%%%
%%% This code has been tested with SWI-Prolog (Multi-threaded, Version 5.2.13)
%%% and appears to function as intended.
:- [adts].
plan(State, Goal, _, Moves) :- equal_set(State, Goal),
write('moves are'), nl,
reverse_print_stack(Moves).
plan(State, Goal, Been_list, Moves) :-
move(Name, Preconditions, Actions),
conditions_met(Preconditions, State),
change_state(State, Actions, Child_state),
not(member_state(Child_state, Been_list)),
stack(Child_state, Been_list, New_been_list),
stack(Name, Moves, New_moves),
plan(Child_state, Goal, New_been_list, New_moves),!.
change_state(S, [], S).
change_state(S, [add(P)|T], S_new) :- change_state(S, T, S2),
add_to_set(P, S2, S_new), !.
change_state(S, [del(P)|T], S_new) :- change_state(S, T, S2),
remove_from_set(P, S2, S_new), !.
conditions_met(P, S) :- subset(P, S).
member_state(S, [H|_]) :- equal_set(S, H).
member_state(S, [_|T]) :- member_state(S, T).
reverse_print_stack(S) :- empty_stack(S).
reverse_print_stack(S) :- stack(E, Rest, S),
reverse_print_stack(Rest),
write(E), nl.
/* sample moves */
move(pickup(X), [handempty, clear(X), on(X, Y)],
[del(handempty), del(clear(X)), del(on(X, Y)),
add(clear(Y)), add(holding(X))]).
move(pickup(X), [handempty, clear(X), ontable(X)],
[del(handempty), del(clear(X)), del(ontable(X)),
add(holding(X))]).
move(putdown(X), [holding(X)],
[del(holding(X)), add(ontable(X)), add(clear(X)),
add(handempty)]).
move(stack(X, Y), [holding(X), clear(Y)],
[del(holding(X)), del(clear(Y)), add(handempty), add(on(X, Y)),
add(clear(X))]).
go(S, G) :- plan(S, G, [S], []).
test :- go([handempty, ontable(b), ontable(c), on(a, b), clear(c), clear(a)],
[handempty, ontable(c), on(a,b), on(b, c), clear(a)]).
大多数代码保持不变,唯一需要解决的问题就是谓词move/3
和查询test
。在添加谓词以解决您的问题之前,请注释掉上面的代码中的谓词move/3
和test/0
。
下面是所有需要的新谓词move/3
和test/0
。显示第一个move/3
,其余的则需要显示(鼠标悬停在下面的黄色框中),以便您可以根据需要查看它们,但是您应该自己尝试做。
move(take_from_trunk(X), [hand(empty), trunk(X)],
[del(hand(empty)), del(trunk(X)),
add(hand(X)), add(trunk(empty))]).
状态跟踪四个位置hand
,ground
,axle
和trunk
,以及三个值flat
,{{1} },以及spare
作为位置。谓词empty
还使用变量,以使变量在执行功能时不会被固定。
move/3
谓词有3个参数。
1.名称:答案中出现的内容,例如move/3
。
2.前提条件:要进行移动,必须在take_from_trunk(spare)
中存在的条件。
3.动作:对状态的更改(如果应用了此动作)。这些代替了您的state
和assert
。更改非常简单,您可以删除一些状态属性,例如retract
并添加一些内容,例如del(hand(empty))
。对于给定的问题,此解决方案很简单,因为每次更改,每个add(hand(X))
都有一个匹配的del
。
查询:
add
示例运行:
test :- go([hand(empty), trunk(spare), axle(flat), ground(empty)],
[hand(empty), trunk(flat), axle(spare), ground(empty)]).
需要其他?- test.
moves are
take_from_trunk(spare)
place_on_ground(spare)
take_off_axle(flat)
place_in_trunk(flat)
pickup_from_ground(spare)
place_on_axle(spare)
true.
谓词。尝试自己做。
move(take_off_axle(X),[hand(empty),axis(X)],
[del(hand(empty)),del(axle(X)),
add(hand(X)),add(axle(empty))])。
move(place_on_ground(X),[hand(X),ground(empty)],
[del(hand(X)),del(ground(empty)),
add(hand(empty)),add(ground(X))])。
move(pickup_from_ground(X),[hand(empty),ground(X)],
[del(hand(empt)),del(ground(X)),
add(hand(X)),add(ground(empty))])。
move(place_on_axle(X),[hand(X),axle(empty)],
[del(hand(X)),del(axle(empty)),
add(hand(empty)),add(axle(X))])。
move(place_in_trunk(X),[hand(X),trunk(empty)],
[del(hand(X)),del(trunk(empty)),
add(hand(empty)),add(trunk(X))])。
在编写这些谓词时,move/3
中的某些无法按我预期的那样工作,因此我为每个谓词创建了简单的测试查询以对其进行检查。
使用测试还帮助我更改了move/3
中的内容及其表示方式,例如,它代替了state
和handempty
更改为holding(X)
, hand(empty)
可以更轻松地理解,跟踪和检查代码的一致性,但很可能会使代码效率更低。
hand(X)
其中的一些测试仅使用一个步骤即可完成预期工作,而其他测试则返回许多步骤。我在这里没有修改test_01 :- go([hand(empty), trunk(spare), axle(flat), ground(empty)],
[hand(spare), trunk(empty), axle(flat), ground(empty)]).
test_02 :- go([hand(empty), trunk(spare), axle(flat), ground(empty)],
[hand(flat), trunk(spare), axle(empty), ground(empty)]).
test_03 :- go([hand(flat), trunk(spare), axle(empty), ground(empty)],
[hand(empty), trunk(spare), axle(empty), ground(flat)]).
test_04 :- go([hand(empty), trunk(spare), axle(empty), ground(flat)],
[hand(flat), trunk(spare), axle(empty), ground(empty)]).
test_05 :- go([hand(spare), trunk(empty), axle(empty), ground(flat)],
[hand(empty), trunk(empty), axle(spare), ground(flat)]).
test_06 :- go([hand(flat), trunk(empty), axle(spare), ground(empty)],
[hand(empty), trunk(flat), axle(spare), ground(empty)]).
,因此只考虑一个move/3
,但是如果您愿意,可以对其进行修改。考虑guard语句或约束。
此处列出测试结果的另一个原因是,表明某些举动并未按照您的想法或意图进行,并且并未完全按照您的预期工作,但是对已发布的查询问题按预期工作。因此,如果您编写测试用例并且它们返回了类似的内容,则不要以为您的move/3
无效或有错误,它们可能不会。当所有move/3
和最终查询都按预期工作时,请返回并尝试了解为什么会发生这些多次移动,然后根据需要进行修改。
move/3