这是kaggle比赛中的猫对狗问题。我的代码看起来像是正确的,但仍然是一个值错误,使我很烦。我想我已经给出了正确的输入大小,但是仍然出现错误。 请帮助我找出错误。 这是我的完整代码:
import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
from random import shuffle
import tensorflow
from tqdm import tqdm
TRAIN_DIR = 'C:\\Users\Kashif\PycharmProjects\DeepLearning-Tensorflow (Sentdex)\Learnings\Cat_VS_Dog\TrainingData'
TEST_DIR = 'C:\\Users\Kashif\PycharmProjects\DeepLearning-Tensorflow (Sentdex)\Learnings\Cat_VS_Dog\TestingData'
IMG_SIZE = 50
MODEL_NAME = 'dogvscat-{}-{}.model'.format(LR, '2conv-basic')
def label_img(img):
word_label = img.split('.')[-3]
if word_label == 'cat': return [1,0]
elif word_label == 'dog': return [0,1]
def create_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR,img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data
def process_test_data():
testing_data=[]
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR, img)
img_num = img.split('.')[0]
img = cv2.resize(cv2.imread(path, cv2.IMREAD_GRAYSCALE), (IMG_SIZE, IMG_SIZE))
testing_data.append([np.array(img), img_num])
np.save('test_data.npy', testing_data)
return testing_data
train_data = create_train_data()
learning_rate = 0.01
epochs = 10
batch_size = 128
n_classes = 2
drop_out = 0.8
filter_h_w = 5
depth_in = 1
depth_out_1 = 32
depth_out_2 = 64
x = tf.placeholder('float', [None, IMG_SIZE * IMG_SIZE])
y = tf.placeholder('float', [None, n_classes])
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def conv_nural_network(x):
weights = {
'W_conv1': tf.Variable(tf.random_normal([filter_h_w, filter_h_w, depth_in, depth_out_1])),
'W_conv2': tf.Variable(tf.random_normal([filter_h_w, filter_h_w, depth_out_1, depth_out_2])),
'W_fc': tf.Variable(tf.random_normal([ int(IMG_SIZE/4) * int(IMG_SIZE/4) * depth_out_2, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'b_conv1': tf.Variable(tf.random_normal([depth_out_1])),
'b_conv2': tf.Variable(tf.random_normal([depth_out_2])),
'b_fc': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
x = tf.reshape(x, shape=[-1, IMG_SIZE, IMG_SIZE, 1])
conv1 = tf.nn.relu(conv2d(x, weights['W_conv1']) + biases['b_conv1'])
conv1 = maxpool2d(conv1)
conv2 = tf.nn.relu(conv2d(conv1, weights['W_conv2']) + biases['b_conv2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2, [-1, int(IMG_SIZE/4) * int(IMG_SIZE/4) * depth_out_2])
fc = tf.nn.relu(tf.matmul(fc, weights['W_fc']) + biases['b_fc'])
fc = tf.nn.dropout(fc, drop_out)
output = tf.matmul(fc, weights['out']) + biases['out']
return output
train = train_data[:-500]
test = train_data[-500:]
train_X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
train_y = [i[1] for i in train]
test_X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]
def train_neural_network(x):
prediction = conv_nural_network(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
init = tf.global_variables_initializer()
loss_trace = []
accuracy_trace = []
with tf.Session() as sess:
sess.run(init)
for i in range(epochs):
sess.run(optimizer, feed_dict={x: train_X, y: train_y})
loss = sess.run(cost_function, feed_dict={x: train_X, y: train_y})
accuracy = np.mean(np.argmax(sess.run(prediction,feed_dict={x:train_X,y:train_y}),axis=1) == np.argmax(train_y,axis=1))
loss_trace.append(loss)
accuracy_trace.append(accuracy)
print('Epoch:', (i + 1), 'loss:', loss, 'accuracy:', accuracy)
print('Final training result:', 'loss:', loss, 'accuracy:', accuracy)
loss_test = sess.run(cost_function, feed_dict={x: test_X, y: test_y})
test_pred = np.argmax(sess.run(prediction, feed_dict={x: test_X, y: test_y}), axis=1)
accuracy_test = np.mean(test_pred == np.argmax(test_y, axis=1))
print('Results on test dataset:', 'loss:', loss_test, 'accuracy:', accuracy_test)
train_neural_network(x)
此错误随后出现。出现值错误,但我不知道输入错误的类型。
ValueError Traceback (most recent call last)
<ipython-input-91-7682c5a4d0ec> in <module>
25
26
---> 27 train_neural_network(x)
<ipython-input-91-7682c5a4d0ec> in train_neural_network(x)
11 sess.run(init)
12 for i in range(epochs):
---> 13 sess.run(optimizer, feed_dict={x: train_X, y: train_y})
14 loss = sess.run(cost_function, feed_dict={x: train_X, y: train_y})
15 accuracy = np.mean(np.argmax(sess.run(prediction,feed_dict={x:train_X,y:train_y}),axis=1) == np.argmax(train_y,axis=1))
ValueError: Cannot feed value of shape (24500, 50, 50, 1) for Tensor 'Placeholder_34:0', which has shape '(?, 2500)'