import pandas as pd
import tensorflow as tf
PREDICTORS = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]
TARGET = ["Survived"]
def load_file(path):
data = pd.read_csv(path)
data["Age"] = data["Age"].fillna(data["Age"].mean())
data["Sex"] = data["Sex"].apply(lambda sex: 1 if sex == "male" else 0)
data["Embarked"] = data["Embarked"].fillna("S")
data.loc[data["Embarked"] == "S", "Embarked"] = 0
data.loc[data["Embarked"] == "C", "Embarked"] = 1
data.loc[data["Embarked"] == "Q", "Embarked"] = 2
data["Fare"] = data["Fare"].fillna(data["Fare"].mean())
return data
train, test = load_file("../input/train.csv"), load_file("../input/test.csv")
train.head()
test.head()
train_x_data = train.loc[:, ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]]
print(train_x_data.head())
test_x_data = test.loc[:, ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked"]]
print(test_x_data.head())
train_y_data = train.loc[:, "Survived"]
print(train_y_data.head())
X = tf.placeholder(tf.float32, shape=[None, 7])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([7, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.matmul(X, W) + b
cost = tf.reduce_mean(tf.square(hypothesis - Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(2001):
sess.run(train, feed_dict={X:train_x_data, Y:train_y_data})
你好
我是kaggle的初学者
尝试“泰坦尼克号教程”'在此网站(https://www.kaggle.com/c/titanic)
我的问题是源代码的最后一个代码(sess.run(train,feed_dict = {X:train_x_data,Y:train_y_data}))< - 这部分!
计算机错误说我在feed_dict中使用形状时遇到问题 我使用[无,7]形状我可以在源代码中看到,但我没有遇到问题。
有人可以帮我解决问题吗?