我想用随机制服初始化我的自定义图层。在TensorFlow中,我可以找到以下使用initializer='uniform'
的代码。但是我想在(-1.0,1.0)
之间设置随机的统一输出范围。怎么做:
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_variable(initializer='uniform',shape=[int(input_shape[-1]),self.num_outputs])
def call(self, input):
return tf.matmul(input, self.kernel)
答案 0 :(得分:1)
一种方法是在numpy
中生成随机制服,然后像这样使用tf.constant_initializer()
:
import tensorflow as tf
import numpy as np
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
shape = [int(input_shape[-1]),self.num_outputs]
init_val = np.random.uniform(low=-1.0, high=1.0, size=shape)
initializer = tf.constant_initializer(init_val,
dtype=tf.float32)
self.kernel = self.add_weight(initializer=initializer,
shape=shape,
name='kernel')
super(MyDenseLayer, self).build(input_shape)
def call(self, input):
return tf.matmul(input, self.kernel)
或改为使用tf.initializers.random_uniform()
init = tf.initializers.random_uniform(minval=-1.0, maxval=1.0)
self.kernel = self.add_weight(initializer=init,
shape=shape,
name='kernel')