我有以下数据集:
node bc cluster
1 russian 0.457039 1
48 man 0.286875 1
155 woman 0.129939 0
3 bit 0.092721 0
5 write 0.065424 0
98 age 0.064347 0
97 escap 0.062675 0
74 game 0.062606 0
然后,我通过bc
值执行kMeans聚类,以将节点分为两个不同的组。现在,通过下面的代码,我得到了上面的结果(聚类结果在cluster
列中。)
bc_df = pd.DataFrame({"node": bc_nodes, "bc": bc_values})
bc_df = bc_df.sort_values("bc", ascending=False)
km = KMeans(n_clusters=2).fit(bc_df[['bc']])
bc_df.loc[:,'cluster'] = km.labels_
print(bc_df.head(8))
这是相当不错的,但是我希望它的工作方式稍有不同,并选择第一个集群中的前四个节点,然后选择第二个集群中的其他节点,因为它们彼此之间更加相似。
我可以对kMeans进行一些调整吗,或者也许您知道sklearn
中的另一种算法可以做到这一点?
答案 0 :(得分:2)
您想要的是基于一维数据的聚类。解决这个问题的一种方法是使用Jenks Natural Breaks(通过Google对其进行解释)。
我没有编写此功能(很多功劳归功于@Frank的解决方案here)
给出您的数据框:
import pandas as pd
df = pd.DataFrame([
['russian', 0.457039],
['man', 0.286875],
['woman', 0.129939],
['bit', 0.092721],
['write', 0.065424],
['age', 0.064347],
['escap', 0.062675],
['game', 0.062606]], columns = ['node','bc'])
具有Jenks自然中断功能的代码:
def get_jenks_breaks(data_list, number_class):
data_list.sort()
mat1 = []
for i in range(len(data_list) + 1):
temp = []
for j in range(number_class + 1):
temp.append(0)
mat1.append(temp)
mat2 = []
for i in range(len(data_list) + 1):
temp = []
for j in range(number_class + 1):
temp.append(0)
mat2.append(temp)
for i in range(1, number_class + 1):
mat1[1][i] = 1
mat2[1][i] = 0
for j in range(2, len(data_list) + 1):
mat2[j][i] = float('inf')
v = 0.0
for l in range(2, len(data_list) + 1):
s1 = 0.0
s2 = 0.0
w = 0.0
for m in range(1, l + 1):
i3 = l - m + 1
val = float(data_list[i3 - 1])
s2 += val * val
s1 += val
w += 1
v = s2 - (s1 * s1) / w
i4 = i3 - 1
if i4 != 0:
for j in range(2, number_class + 1):
if mat2[l][j] >= (v + mat2[i4][j - 1]):
mat1[l][j] = i3
mat2[l][j] = v + mat2[i4][j - 1]
mat1[l][1] = 1
mat2[l][1] = v
k = len(data_list)
kclass = []
for i in range(number_class + 1):
kclass.append(min(data_list))
kclass[number_class] = float(data_list[len(data_list) - 1])
count_num = number_class
while count_num >= 2: # print "rank = " + str(mat1[k][count_num])
idx = int((mat1[k][count_num]) - 2)
# print "val = " + str(data_list[idx])
kclass[count_num - 1] = data_list[idx]
k = int((mat1[k][count_num] - 1))
count_num -= 1
return kclass
# Get values to find the natural breaks
x = list(df['bc'])
# Calculate the break values.
# I want 2 groups, so parameter is 2.
# If you print (get_jenks_breaks(x, 2)), it will give you 3 values: [min, break1, max]
# Obviously if you want more groups, you'll need to adjust this and also adjust the assign_cluster function below.
breaking_point = get_jenks_breaks(x, 2)[1]
# Creating group for the bc column
def assign_cluster(bc):
if bc < breaking_point:
return 0
else:
return 1
# Apply `assign_cluster` to `df['bc']`
df['cluster'] = df['bc'].apply(assign_cluster)
输出:
print (df)
node bc cluster
0 russian 0.457039 1
1 man 0.286875 1
2 woman 0.129939 1
3 bit 0.092721 0
4 write 0.065424 0
5 age 0.064347 0
6 escap 0.062675 0
7 game 0.062606 0
答案 1 :(得分:1)
与从索引3开始的值相比,前两个值始终以另一个类结尾,因为它们位于〜0.152703的平均值之下。由于您的问题也可以解释为一个简单的两类问题,因此您也可以使用中位数〜0.0790725将这两个类分开:
idx = df['bc'] > df['bc'].median()
现在,您可以使用此索引选择以中位数分隔的两个类别:
df[idx]
给予
node bc cluster
1 russian 0.457039 1
48 man 0.286875 1
155 woman 0.129939 0
3 bit 0.092721 0
和
df[~idx]
给予
node bc cluster
5 write 0.065424 0
98 age 0.064347 0
97 escap 0.062675 0
74 game 0.062606 0
答案 2 :(得分:0)
只需自己选择阈值即可。
在获得所需结果之前,不建议修改算法。
如果您希望前五个术语成为一个群集,则可以根据需要标记它们。不要假装这是聚类的结果。