熊猫在多列上按日期分组/按日期

时间:2019-04-01 20:07:27

标签: python pandas

我正在尝试从此df中获取以下输出。它是由Django查询构造而成的,该查询被转换为df:

messages = Message.objects.all()
df = pd.DataFrame.from_records(messages.values())

+---+-----------------+------------+---------------------+
|   |    date_time    | error_desc |        text         |
+---+-----------------+------------+---------------------+
| 0 | 3/31/2019 12:35 | Error msg  | Hello there         |
| 1 | 3/31/2019 12:35 |            | Nothing really here |
| 2 | 4/1/2019 12:35  | Error msg  | What if I told you  |
| 3 | 4/1/2019 12:35  |            | Yes                 |
| 4 | 4/1/2019 12:35  | Error Msg  | Maybe               |
| 5 | 4/2/2019 12:35  |            | Sure I could        |
| 6 | 4/2/2019 12:35  |            | Hello again         |
+---+-----------------+------------+---------------------+

输出:

+-----------+-------------+--------+-----------------------------+--------------+
|   date    | Total count | Errors | Greeting (start with hello) | errors/total |
+-----------+-------------+--------+-----------------------------+--------------+
| 3/31/2019 |           2 |      1 |                           1 | 50%          |
| 4/1/2019  |           3 |      2 |                           0 | 66.67%       |
| 4/2/2019  |           2 |      0 |                           1 | 0%           |
+-----------+-------------+--------+-----------------------------+--------------+

我可以使用下面的代码部分地到达那里,但是这样做似乎有些a回。我会根据每个人是否符合条件给他们打上“是” /“否”的标记,然后进行分组。

df['date'] = df['date_time'].dt.date
df['greeting'] = np.where(df["text"].str.lower().str.startswith('hello'), "Yes", "No")
df['error'] = np.where(df["error_desc"].notnull(), "Yes", "No")

df.set_index("date")
    .groupby(level="date")
    .apply(lambda g: g.apply(pd.value_counts))
    .unstack(level=1)
    .fillna(0)

这会产生计数,但会在多个“是/否”列中。

在这一点之后我可以做一些操作,但是有没有更有效的方法来计算我想要的输出?

2 个答案:

答案 0 :(得分:0)

您可以在多列上使用lambda

df.groupby('date').apply(lambda x: 
                         pd.Series({'total_count': len(x),
                                    'error_count': (x['error'] == 'Yes').sum(),
                                    'hello_count': (x['greeting'] == 'Yes').sum()}))

要计算比率:

df['errors/total'] = df['error_count'] / df['total_count']

答案 1 :(得分:0)

这是我尝试过的,为您提供了想要的答案:


df['date_time'] = pd.to_datetime(df['date_time']).dt.date
df1=pd.DataFrame()
df1['total count'] = df['date_time'].groupby(df['date_time']).count()
df1['errors'] = df['error_desc'].groupby(df['date_time']).count()
df1['Greeting'] = df['text'].groupby(df['date_time']).apply(lambda x: x[x.str.lower().str.startswith('hello')].count())
df1['errors/total'] = round(df1['errors']/df1['total count']*100,2)