我正在测试keras层。我建立了一个简单的密集层,其输入形状为(10,2)
,所有值均等于1。并且我使用zero_initial_state来设置初始层权重。但是,我无法理解密集层的输出,因为它可能用sth计算最终输出。未知。我的代码是:
batch_size = 10
time_steps = 30
label_num = 2.
units = 5
batch_data = tf.ones((batch_size, label_num))
dense_layer = Dense(units)
output = dense_layer(batch_data)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
print('__________________output_____________________')
print(sess.run(output))
我打印初始内核并进行偏向:
____________________self.kernel____________________
[[-0.6072792 0.87520194 -0.5916964 -0.28233814 0.37042332]
[ 0.24503589 -0.8950937 -0.7122175 0.67322683 0.9035703 ]]
____________________self.bias____________________
[0. 0. 0. 0. 0.]
我认为最终输出应该是:
[[-0.3622433 -0.01989174 -1.3039138 0.3908887 1.2739936 ]
[-0.3622433 -0.01989174 -1.3039138 0.3908887 1.2739936 ]
[-0.3622433 -0.01989174 -1.3039138 0.3908887 1.2739936 ]
[-0.3622433 -0.01989174 -1.3039138 0.3908887 1.2739936 ]
....
但是,最终输出是:
[[-0.25280607 1.0728977 -0.6096982 1.1957564 0.82103825]
[-0.25280607 1.0728977 -0.6096982 1.1957564 0.82103825]
[-0.25280607 1.0728977 -0.6096982 1.1957564 0.82103825]
激活为无。为什么角膜密集层的输出是这个?