我有一个预训练的ResNet模型,该模型在64x64图像上训练。我想使用包含200x200图像的新数据集进行转移学习。
我正在加载模型,例如:
model = ResNet50(include_top=False, weights=None, input_shape=(64,64,3))
model.load_weights("a trained model weights on 64x64")
model.layers.pop()
for layer in model.layers:
layer.trainable = False
x = model.output
x = MaxPooling2D((2,2), strides=(2,2), padding='same')(x)
x = Flatten(name='flatten')(x)
x = Dropout(0.2)(x)
x = Dense(512, activation='relu')(x)
predictions = Dense(101, activation='softmax', name='predictions')(x)
top_model = Model(inputs=model.input, outputs=predictions)
top_model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=[accuracy])
EPOCHS = 100
BATCH_SIZE = 32
STEPS_PER_EPOCH = 4424 // BATCH_SIZE
VALIDATION_STEPS = 466 // BATCH_SIZE
callbacks = [LearningRateScheduler(schedule=Schedule(EPOCHS, initial_lr=lr_rate)),
ModelCheckpoint(str(output_dir) + "/weights.{epoch:03d}-{val_loss:.3f}-{val_age_mae:.3f}.hdf5",
monitor="val_age_mae",
verbose=1,
save_best_only=False,
mode="min")
]
hist = top_model.fit_generator(generator=train_set,
epochs=EPOCHS,
steps_per_epoch = STEPS_PER_EPOCH,
validation_data=val_set,
validation_steps = VALIDATION_STEPS,
verbose=1,
callbacks=callbacks)
我想基于200x200像素的图像进行转移学习。我对此很陌生,该如何修改?
是否可以修改模型输入形状?我是否需要做一些与空间大小有关的事情?
建议使用哪种优化程序?亚当还是新币?
__________________________________________________________________________________________________
res5c_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_46[0][0]
__________________________________________________________________________________________________
bn5c_branch2a (BatchNormalizati (None, 2, 2, 512) 2048 res5c_branch2a[0][0]
__________________________________________________________________________________________________
activation_47 (Activation) (None, 2, 2, 512) 0 bn5c_branch2a[0][0]
__________________________________________________________________________________________________
res5c_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_47[0][0]
__________________________________________________________________________________________________
bn5c_branch2b (BatchNormalizati (None, 2, 2, 512) 2048 res5c_branch2b[0][0]
__________________________________________________________________________________________________
activation_48 (Activation) (None, 2, 2, 512) 0 bn5c_branch2b[0][0]
__________________________________________________________________________________________________
res5c_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_48[0][0]
__________________________________________________________________________________________________
bn5c_branch2c (BatchNormalizati (None, 2, 2, 2048) 8192 res5c_branch2c[0][0]
__________________________________________________________________________________________________
add_16 (Add) (None, 2, 2, 2048) 0 bn5c_branch2c[0][0]
activation_46[0][0]
__________________________________________________________________________________________________
activation_49 (Activation) (None, 2, 2, 2048) 0 add_16[0][0]
__________________________________________________________________________________________________
pred_age (Dense) (None, 2, 2, 101) 206848 activation_49[0][0]
==================================================================================================
Total params: 23,794,560
Trainable params: 23,741,440
Non-trainable params: 53,120
__________________________________________________________________________________________________
出现以下错误
ValueError: Error when checking input: expected input_1 to have shape (64, 64, 3) but got array with shape (128, 128, 3)
答案 0 :(得分:0)
考虑示例,我按原样使用您的模型,只更改了输入数据。
test = np.random.rand(10, 128, 128, 3)
您可能会看到,它是一个随机数组,大小为128, 128, 3
的10个批次
top_model.fit(test, epochs=1, batch_size=1, steps_per_epoch = 10)
然后,我使用fit方法进行演示。
ValueError:检查输入时出错:预期input_1具有形状 (64,64,3),但数组的形状为(128,128,3)
这是错误消息。很明显,您的输入数据的格式错误。添加函数,产生generator=train_set
。并且最好将Dataset API与fit方法一起使用。更容易,更快。 https://www.tensorflow.org/guide/datasets