提供了三种类型的食物,即肉,蛋糕和比萨饼 和N家不同的商店出售食物,我只能从一种食物中选择一种 每个商店。另外,我只能以A,B和C编号购买商品,其中“ A”表示从不同商店的“ A”总数中购买肉类(请参见示例)。我的任务是 消耗食物,以便我可以拥有最大的能量。 例如,
10 <= number of stores <br>
5 3 2 <= out of 10 stores I can pick meat from 5 stores only. Similarly,
I can pick cake from 3 out of 10 stores...
56 44 41 1 <= Energy level of meat, cake and pizza - (56, 44, 41) for first store.<br>
56 84 45 2
40 98 49 3
91 59 73 4
69 94 42 5
81 64 80 6
55 76 26 7
63 24 22 8
81 60 44 9
52 95 11 10
所以要最大限度地利用能量,我可以消耗...
商店编号中的肉:
[1, 4, 7, 8, 9] => [56, 91, 55, 63, 81]
从商店编号开始结帐:
[3, 5, 10] => [98, 94, 95]
商店编号中的披萨:
[2, 6] => [45, 80]
这使我最终获得758的最大能量。
由于我是动态编程的新手,所以我尝试通过生成独特的组合(例如,
10 C 5 * (10-5) C 3 * (10-5 -3) C 2 = 2520
这是我的代码,
nStores = 10
a, b, c = 5, 3, 2
matrix = [
[56,44,41],
[56,84,45],
[40,98,49],
[91,59,73],
[69,94,42],
[81,64,80],
[55,76,26],
[63,24,22],
[81,60,44],
[52,95,11]
]
count = a + b + c
data = []
allOverCount = [i for i in range(count)]
def genCombination(offset, depth, passedData, reductionLevel = 3):
if (depth == 0):
first = set(data)
if reductionLevel == 3:
return genCombination(0,b,[i for i in allOverCount if i not in first], reductionLevel=2)
elif reductionLevel == 2:
return genCombination(0,c,[i for i in allOverCount if i not in first], reductionLevel=1)
elif reductionLevel == 1:
xAns = 0
for i in range(len(data)):
if i < a:
xAns += matrix[data[i]][0]
elif i < a + b:
xAns += matrix[data[i]][1]
else:
xAns += matrix[data[i]][2]
return xAns
oneData = 0
for i in range(offset, len(passedData) - depth + 1 ):
data.append(passedData[i])
oneData = max(oneData, genCombination(i+1, depth-1, passedData, reductionLevel))
del data[-1]
return oneData
passedData = [i for i in range(count)]
finalOutput = genCombination(0,a,passedData)
print(finalOutput)
我知道这不是正确的方法。我该如何优化?
答案 0 :(得分:4)
对背包的修改似乎可以解决它。
让我们将dp表定义为4维数组dp [N + 1] [A + 1] [B + 1] [C + 1]
现在有些单元格dp [n] [a] [b] [c]表示我们已经考虑了n家商店,我们从中选择了一家肉店, b的蛋糕店和c的比萨店,它存储着我们可以拥有的最大能量。
转换也很容易,从某些状态dp [n] [a] [b] [c]我们可以转到:
剩下的就是填写dp表。示例代码:
N = 10
A,B,C = 5,3,2
energy = [
[56, 44, 41],
[56, 84, 45],
[40, 98, 49],
[91, 59, 73],
[69, 94, 42],
[81, 64, 80],
[55, 76, 26],
[63, 24, 22],
[81, 60, 44],
[52, 95, 11]
]
dp = {}
for n in range(N+1):
for a in range(A+1):
for b in range(B+1):
for c in range(C+1):
dp[n,a,b,c]=0
answer = 0;
for n in range(N+1):
for a in range(A+1):
for b in range(B+1):
for c in range(C+1):
#Case 1, skip n-th shop
if (n+1,a,b,c) in dp: dp[n+1,a,b,c] = max(dp[n+1,a,b,c], dp[n,a,b,c])
#Case 2, buy meat from n-th shop
if (n+1,a+1,b,c) in dp: dp[n+1,a+1,b,c] = max(dp[n+1,a+1,b,c], dp[n,a,b,c] + energy[n][0])
#Case 3, buy cake from n-th shop
if (n+1,a,b+1,c) in dp: dp[n+1,a,b+1,c] = max(dp[n+1,a,b+1,c], dp[n,a,b,c] + energy[n][1])
#Case 4, buy pizza from n-th shop
if (n+1,a,b,c+1) in dp: dp[n+1,a,b,c+1] = max(dp[n+1,a,b,c+1], dp[n,a,b,c] + energy[n][2])
answer = max(answer,dp[n,a,b,c])
print(answer)
答案 1 :(得分:4)
这是通过纸浆(https://pypi.org/project/PuLP)使用线性编程的解决方案,为我提供了最佳解决方案
document
我认为该性能应优于手动编码的穷举求解器。
Maximum energy level: 758.0
Mapping of stores per foodtype: {1: [9, 2, 4], 0: [3, 8, 0, 6, 7], 2: [1, 5]}