我正在学习SEM / CFA,目前正在关注Beaujean's (2014) book on using lavaan。在本章中,他谈到了CFA和必须确保模型正确/过度识别所必须使用的指标变量数量,他给出了一些经验法则。例如,“ LV(潜在变量)具有3个指示符变量,并且误差方差不会变小。”
我的要点是:我该如何检查?在运行模型之后,我能够获得误差协方差矩阵(按照本书中给出的步骤进行操作),但是我不知道如何解释它。下面,我提供了Beaujean使用的示例(这些代码来自他的书)
# convert vector of correlations into matrix
wisc4.cor <- lower2full(c(1,0.72,1,0.64,0.63,1,0.51,0.48,0.37,1,0.37,0.38,0.38,0.38,1))
# enter the SDs
wisc4.sd <- c(3.01 , 3.03 , 2.99 , 2.89 , 2.98)
# name the variables
colnames(wisc4.cor) <- rownames(wisc4.cor) <- c("Information", "Similarities", "Word.Reasoning", "Matrix.Reasoning", "Picture.Concepts")
names(wisc4.sd) <- c("Information", "Similarities", "Word.Reasoning", "Matrix.Reasoning", "Picture.Concepts")
# convert correlations and SDs to covarainces
wisc4.cov <- cor2cov(wisc4.cor,wisc4.sd)
# specify single factor model
wisc4.model<-'
g =~ a*Information + b*Similarities + c*Word.Reasoning + d*Matrix.Reasoning + e*Picture.Concepts
'
# fit model
wisc4.fit <- cfa(model=wisc4.model, sample.cov=wisc4.cov, sample.nobs=550, std.lv=FALSE)
# examine parameter estimates
summary(wisc4.fit,standardized=TRUE)
parameterEstimates(wisc4.fit,standardized=TRUE)
#obtain the model-implied covariances of the indicator variables
inspect(wisc4.fit, "cov.ov")
这就是我得到的:
Infrmt Smlrts Wrd.Rs Mtrx.R Pctr.C
Information 9.044
Similarities 6.551 9.164
Word.Reasoning 5.716 5.633 8.924
Matrix.Reasoning 4.303 4.241 3.700 8.337
Picture.Concepts 3.606 3.553 3.100 2.334 8.864
我该如何解释? 非常感谢!