我正在尝试使用tf.data优化.h5数据的输入管道。但是我遇到了TypeError: expected str, bytes or os.PathLike object, not Tensor
。我进行了一项研究,但找不到将字符串的张量转换为字符串的任何信息。
此简化代码是可执行的,并返回相同的错误:
batch_size = 1000
conv_size = 3
nb_conv = 32
learning_rate = 0.0001
# define parser function
def parse_function(fname):
with h5py.File(fname, 'r') as f: #Error comes from here
X = f['X'].reshape(batch_size, patch_size, patch_size, 1)
y = f['y'].reshape(batch_size, patch_size, patch_size, 1)
return X, y
# create a list of files path
flist = []
for dirpath, _, fnames in os.walk('./proc/'):
for fname in fnames:
if fname.startswith('{}_{}'.format(patch_size, batch_size)) and fname.endswith('h5'):
flist.append(fname)
# prefetch data
dataset = tf.data.Dataset.from_tensor_slices((flist))
dataset = dataset.shuffle(len(flist))
dataset = dataset.map(parse_function, num_parallel_calls=4)
dataset = dataset.batch(1)
dataset = dataset.prefetch(3)
# simplest model that I think of
X_ph = tf.placeholder(tf.float32, shape=None)
y_ph = tf.placeholder(tf.float32, shape=None)
W = tf.get_variable('w', shape=[conv_size, conv_size, 1, 1], initializer=tf.contrib.layers.xavier_initializer())
loss = tf.reduce_mean(tf.losses.mean_squared_error(tf.nn.softmax(labels=y_ph, predictions=tf.matmul(X_ph, W))))
train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
# start session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(train_op, feed_dict={X_ph: dataset[0], y_ph: dataset[1]}))
显然fname
是字符串的张量,但position参数仅等待字符串。我找不到与此有关的任何文档。 another post的答案不能解决此问题。就我而言,我只能在h5上工作,其中一个h5可以存储一批。
更新解决方案: 感谢@kvish的注释,解决了加载.h5文件的部分。 使用简单的转换层升级代码,已使用占位符。 每个.h5是一个批处理。我要并行预取多个批处理(h5py不支持多线程读取,因此我将批处理写入多个文件中)。一个人可以复制并粘贴:
import h5py
import threading
import numpy as np
import tensorflow as tf
# generate some img data
for i in range(5):
with h5py.File('./test_{}.h5'.format(i), 'w') as f:
f.create_dataset('X', shape=(1000, 100, 100), dtype='float32', data=np.random.rand(10**7).reshape(1000, 100, 100))
f.create_dataset('y', shape=(1000, 100, 100), dtype='float32', data=np.random.rand(10**7).reshape(1000, 100, 100))
print(threading.get_ident())
# params
num_cores = 3
shuffle_size = 1
batch_size = 1
# read .h5 file
def parse_file(f):
print(f.decode('utf-8'))
with h5py.File(f.decode("utf-8"), 'r') as fi:
X = fi['X'][:].reshape(1000, 100, 100, 1)
y = fi['y'][:].reshape(1000, 100, 100, 1)
print(threading.get_ident()) # to see the thread id
return X, y
# py_func wrapper
def parse_file_tf(filename):
return tf.py_func(parse_file, [filename], [tf.float32, tf.float32])
# tf.data input pipeline
files = tf.data.Dataset.list_files('./test_*.h5')
dataset = files.map(parse_file_tf, num_parallel_calls=num_core)
dataset = dataset.batch(batch_size).shuffle(shuffle_size).prefetch(3)
it = dataset.make_initializable_iterator()
iter_init_op = it.initializer
X_it, y_it = it.get_next()
# simplest model that I can think of
with tf.name_scope("Conv1"):
W = tf.get_variable("W", shape=[3, 3, 1, 1],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable("b", shape=[1], initializer=tf.contrib.layers.xavier_initializer())
layer1 = tf.nn.conv2d(X_it, W, strides=[1, 1, 1, 1], padding='SAME') + b
out = tf.nn.relu(layer1)
loss = tf.reduce_mean(tf.losses.mean_squared_error(labels=y_it, predictions=out))
train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss)
# session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(iter_init_op)
sess.run([train_op])
sess.close()
不知何故,还会有与该帖子无关的另一个问题。
tensorflow-cpu v1.12:工作正常
tensorflow-gpu v1.12:发生运行时问题
回溯(最近通话最近):文件 “ /envs/tf/lib/python3.6/site-packages/tensorflow/python/client/session.py”, _do_call中的第1334行 返回fn(* args)文件“ /envs/tf/lib/python3.6/site-packages/tensorflow/python/client/session.py”, _run_fn中的第1319行 选项,feed_dict,fetch_list,target_list,run_metadata)文件“ /envs/tf/lib/python3.6/site-packages/tensorflow/python/client/session.py”, _call_tf_sessionrun中的第1407行 run_metadata)tensorflow.python.framework.errors_impl.NotFoundError:没有算法 工作了! [[{{node Conv1 / Conv2D}} = Conv2D [T = DT_FLOAT, data_format =“ NCHW”,膨胀= [1,1,1,1,1],padding =“ SAME”, 步幅= [1,1,1,1],use_cudnn_on_gpu = true, _device =“ / job:localhost / replica:0 / task:0 / device:GPU:0”](渐变/ Conv1 / Conv2D_grad / Conv2DBackpropFilter-0-TransposeNHWCToNCHW-LayoutOptimizer, W / read)]] [[{{node mean_squared_error / num_present / broadcast_weights / assert_broadcastable / AssertGuard / Assert / Switch_2 / _37}} = _Recvclient_terminated = false,recv_device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”, send_device =“ / job:localhost /副本:0 / task:0 / device:GPU:0”, send_device_incarnation = 1,tensor_name =“ edge_63_me ... t / Switch_2”, tensor_type = DT_INT32, _device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”]] tensorflow-cpu v1.12:很好!
答案 0 :(得分:1)
这里是一个示例,说明如何借助py_func包装函数。请注意,这在TF V2中已弃用。您可以按照文档获取更多详细信息。
def parse_function_wrapper(filename):
# Assuming your data and labels are float32
# Your input is parse_function, who arg is filename, and you get X and y as output
# whose datatypes are indicated by the tuple argument
features, labels = tf.py_func(
parse_function, [filename], (tf.float32, tf.float32))
return features, labels
# Create dataset of filenames.
dataset = tf.data.Dataset.from_tensor_slices(flist)
dataset = dataset.shuffle(len(flist))
dataset = dataset.map(parse_function_wrapper)