我训练了一个keras模型并将其保存为h5格式。我想将此模型托管在Google Cloud ml引擎上以进行预测。 如何将keras模型.h5文件转换为保存的模型。
答案 0 :(得分:0)
我看到过此代码的帖子(尽管我在许多其他帖子中也看到了此解决方案)是:https://www.dlology.com/blog/how-to-convert-trained-keras-model-to-tensorflow-and-make-prediction/
import tensorflow as tf
from keras import backend as K
# This line must be executed before loading Keras model.
K.set_learning_phase(0)
from keras.models import load_model
model = load_model('./model/keras_model.h5')
def freeze_session(session, keep_var_names=None, output_names=None,clear_devices=True):
"""
Freezes the state of a session into a pruned computation graph.
Creates a new computation graph where variable nodes are replaced by
constants taking their current value in the session. The new graph will be
pruned so subgraphs that are not necessary to compute the requested
outputs are removed.
@param session The TensorFlow session to be frozen.
@param keep_var_names A list of variable names that should not be frozen,
or None to freeze all the variables in the graph.
@param output_names Names of the relevant graph outputs.
@param clear_devices Remove the device directives from the graph for better portability.
@return The frozen graph definition.
"""
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
# Graph -> GraphDef ProtoBuf
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def,
output_names, freeze_var_names)
return frozen_graph
frozen_graph = freeze_session(K.get_session(),
output_names=[out.op.name for out in model.outputs])
tf.train.write_graph(frozen_graph, "model", "tf_model.pb", as_text=False)