我已经在Keras和Pytorch中实现了一篇有关CNN架构的论文,但是keras的实现效率更高,它需要4 gb gpu来训练50000个样本和10000个验证样本,而pytorch一个人需要全部12 gb gpu和我什至不能使用验证集! 两者的优化器均具有动量和相同设置。 有关本文的更多信息:[体系结构]:https://github.com/Moeinh77/Lightweight-Deep-Convolutional-Network-for-Tiny-Object-Recognition/edit/master/train.py
火炬代码:
class SimpleCNN(torch.nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv2d_11 = torch.nn.Conv2d(3, 64, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_12 = torch.nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_21 = torch.nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_22 = torch.nn.Conv2d(128, 128, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_31 = torch.nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_32 = torch.nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_33 = torch.nn.Conv2d(256, 256, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_41 = torch.nn.Conv2d(256, 512, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_42 = torch.nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1)
self.conv2d_51 = torch.nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1)
self.Batchnorm_1=torch.nn.BatchNorm2d(64)
self.Batchnorm_2=torch.nn.BatchNorm2d(128)
self.Batchnorm_3=torch.nn.BatchNorm2d(256)
self.Batchnorm_4=torch.nn.BatchNorm2d(512)
self.dropout2d_1=torch.nn.Dropout2d(p=0.3)
self.dropout2d_2=torch.nn.Dropout2d(p=0.4)
self.dropout2d_3=torch.nn.Dropout2d(p=0.5)
self.dropout1d=torch.nn.Dropout(p=0.5)
self.maxpool2d = torch.nn.MaxPool2d(kernel_size = 2, stride = 2, padding = 0)
self.avgpool2d = torch.nn.AvgPool2d(kernel_size = 2, stride = 2, padding = 0)
self.fc = torch.nn.Linear(512, 10)
def forward(self, x):
############################# Phase 1
#print(x.size())
x = F.relu(self.conv2d_11(x))
x = self.dropout2d_1(x) #rate =0.3
x = self.Batchnorm_1(x) #input 64
#print(x.size())
x = F.relu(self.conv2d_12(x))
x = self.dropout2d_1(x) #rate=0.3
x = self.Batchnorm_1(x) #input 64
#print(x.size())
x = self.maxpool2d(x)
#print(x.size())
############################# Phase 2
x = F.relu(self.conv2d_21(x))
x = self.dropout2d_1(x) #rate=0.3
x = self.Batchnorm_2(x) #input 128
#print(x.size())
x = F.relu(self.conv2d_22(x))
x = self.dropout2d_1(x) #rate=0.3
x = self.Batchnorm_2(x) #input 128
#print(x.size())
x = self.maxpool2d(x)
#print(x.size())
############################# Phase 3
x = F.relu(self.conv2d_31(x))
x = self.dropout2d_2(x) #rate=0.4
x = self.Batchnorm_3(x) #input 256
#print(x.size())
x = F.relu(self.conv2d_32(x))
x = self.dropout2d_2(x) #rate=0.4
x = self.Batchnorm_3(x) #input 256
#print(x.size())
x = F.relu(self.conv2d_33(x))
x = self.dropout2d_2(x) #rate=0.4
x = self.Batchnorm_3(x) #input 256
#print(x.size())
x = self.maxpool2d(x)
#print(x.size())
############################# Phase 4
x = F.relu(self.conv2d_41(x))
x = self.dropout2d_2(x)
x = self.Batchnorm_4(x)
#print(x.size())
x = F.relu(self.conv2d_42(x))
x = self.dropout2d_2(x)
x = self.Batchnorm_4(x)
#print(x.size())
x = self.maxpool2d(x)
#print(x.size())
############################# Phase 5
x = F.relu(self.conv2d_51(x))
x = self.dropout2d_3(x)
x = self.Batchnorm_4(x)
#print(x.size())
x = self.avgpool2d(x)
#print(x.size())
x = x.view(x.size(0), -1)
#print(x.size())
x = self.dropout1d(x)
x = F.relu(self.fc(x))
x = self.dropout1d(x)
#print(x.size())
x = F.softmax(x)
###############################
return(x)
import time
from torch.optim.lr_scheduler import ReduceLROnPlateau
def trainNet(model, batch_size, n_epochs, learning_rate):
lr=learning_rate
#Print all of the hyperparameters of the training iteration:
print("======= HYPERPARAMETERS =======")
print("Batch size=", batch_size)
print("Epochs=", n_epochs)
print("Base learning_rate=", learning_rate)
print("=" * 30)
#Get training data
n_batches = len(train_loader)
#Time for printing
training_start_time = time.time()
#Loss function"
loss = torch.nn.CrossEntropyLoss()
optimizer = createOptimizer(model, lr)
scheduler = ReduceLROnPlateau(optimizer, 'min'
,patience=3,factor=0.9817
,verbose=True,)
#Loop for n_epochs
for epoch in range(n_epochs):
#save the weightsevery 10 epochs
if epoch % 10 == 0 :
torch.save(model.state_dict(), 'model.ckpt')
#print('learning rate : {:.3f} '.format(lr))
#Create our loss and optimizer functions
running_loss = 0.0
print_every = n_batches // 10
start_time = time.time()
total_train_loss = 0
total_train_acc = 0
epoch_time = 0
for i, data in enumerate(train_loader, 0):
#free up the cuda memory
inputs=None
labels=None
inputs, labels = data
inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
optimizer.zero_grad()
outputs = model(inputs)
score, predictions = torch.max(outputs.data, 1)
acc = (labels==predictions).sum()
total_train_acc += acc
loss_size = loss(outputs, labels)
loss_size.backward()
optimizer.step()
running_loss += loss_size.item()
total_train_loss += loss_size.item()
#Print every 10th batch of an epoch
if (i + 1) % (print_every + 1) == 0:
print("Epoch {}, {:d} % \t | train_loss: {:.3f} | train_acc:{}% | took: {:.2f}s".format(
epoch+1, int(100 * (i+1) / n_batches), running_loss / print_every
,int(acc), time.time() - start_time))
epoch_time += (time.time() - start_time)
#Reset running loss and time
running_loss = 0.0
start_time = time.time()
scheduler.step(total_train_loss)
torch.cuda.empty_cache()
#At the end of the epoch, do a pass on the validation set
total_val_loss = 0
for inputs, labels in val_loader:
#Wrap tensors in Variables
inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
#Forward pass
val_outputs = model(inputs)
val_loss_size = loss(val_outputs, labels)
total_val_loss += val_loss_size.item()
print("-"*30)
print("Train loss = {:.2f} | Train acc = {:.1f}% | Val loss={:.2f} | took: {:.2f}s".format(
total_train_loss / len(train_loader),total_train_acc/ len(train_loader)
,total_val_loss/len(val_loader),epoch_time))
print("="*60)
print("Training finished, took {:.2f}s".format(time.time() - training_start_time))
CNN = SimpleCNN().to(device)
CNN.eval()
trainNet(CNN, batch_size=64, n_epochs=250, learning_rate=0.1)
凯拉斯:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten,Activation
from tensorflow.keras.layers import Conv2D, MaxPool2D,BatchNormalization,GlobalAveragePooling2D
model = Sequential()
#####################################################
# Phase 1
model.add(Conv2D(64,(3,3),input_shape=(32,32,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.3))
model.add(BatchNormalization())
#(32,32,3)
model.add(Conv2D(64,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.3))
model.add(BatchNormalization())
#(32,32,3)
model.add(MaxPool2D((2,2)))
#(16,16,3)
#####################################################
#Phase 2
model.add(Conv2D(128, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.3))
model.add(BatchNormalization())
#(16,16,3)
model.add(Conv2D(128, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.3))
model.add(BatchNormalization())
#(16,16,3)
model.add(MaxPool2D((2,2),padding='same'))
#(8,8,3)
#####################################################
#Phase 3
model.add(Conv2D(256, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.4))
model.add(BatchNormalization())
#(8,8,3)
model.add(Conv2D(256, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.4))
model.add(BatchNormalization())
#(8,8,3)
model.add(Conv2D(256, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.4))
model.add(BatchNormalization())
#(8,8,3)
model.add(MaxPool2D((2,2)))
#(4,4,3)
#####################################################
#Phase 4
model.add(Conv2D(512, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.4))
model.add(BatchNormalization())
#(4,4,3)
model.add(Conv2D(512, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.4))
model.add(BatchNormalization())
#(4,4,3)
model.add(MaxPool2D((2,2)))
#(2,2,3)
#####################################################
#Phase 5
model.add(Conv2D(512, (3,3),padding='same'))
model.add(Activation('relu'))
model.add(Dropout(rate=0.5))
model.add(BatchNormalization())
#(2,2,3)
model.add(GlobalAveragePooling2D(data_format='channels_last'))
model.add(Flatten())
model.add(Dropout(rate=0.5))
model.add(Dense(10,activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer=sgd_optimizer,loss='categorical_crossentropy',metrics=['accuracy'])
history=model.fit(x=x_train,y=y_train,batch_size=64,
epochs=250,verbose=1,callbacks=[checkpoint],validation_data=(x_test,y_test))
答案 0 :(得分:1)
编辑:仔细观察,acc
似乎不需要渐变,因此本段可能不适用。
似乎最重要的问题是total_train_acc
在整个训练循环中积累了历史记录(有关详细信息,请参见https://pytorch.org/docs/stable/notes/faq.html)。
将total_train_acc += acc
更改为total_train_acc += acc.item()
应该可以解决此问题。
另一件事,您应使用with torch.no_grad()
进行验证循环。
与速度无关,但是应该使用model.train()
和model.eval()
进行培训/评估,以使batchnorm和dropout层以正确的模式工作。