为什么这种并行矩阵的加法效率很低?

时间:2015-12-03 12:43:41

标签: java multithreading optimization matrix concurrency

我是多线程的新手,并且没有多少使用内部课程的经验。

任务是以并行方式添加包含双精度值的两个矩阵。

我的想法是递归地执行此操作,将大矩阵拆分为较小的矩阵并在矩阵达到特定大小限制时执行加法,然后融合它们。

并行化代码的运行速度比序列化代码慢40-80倍。

我怀疑我在这里做错了什么。也许是因为我创造了这么多新的矩阵,或者因为我遍历它们很多次。

以下是代码:

package concurrency;

import java.util.Random;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;

public class ParallelMatrixAddition {
public static void main(String[] args) {

    Random rand = new Random();

    final int SIZE = 1000;
    double[][] one = new double[SIZE][SIZE];
    double[][] two = new double[SIZE][SIZE];
    double[][] serialSums = new double[SIZE][SIZE];
    double[][] parallelSums = new double[SIZE][SIZE];

    for (int i = 0; i < one.length; i++) {
        for (int j = 0; j < one.length; j++) {
            one[i][j] = rand.nextDouble();
            two[i][j] = rand.nextDouble();
        }
    }

    long serialStartTime = System.currentTimeMillis();

    for (int i = 0; i < SIZE; i++) {
        for (int j = 0; j < SIZE; j++) {
            serialSums[i][j] = one[i][j] + two[i][j];
        }
    }

    long serialEndTime = System.currentTimeMillis();

    System.out.println("Serial runtime is: " + (serialEndTime - serialStartTime) + " milliseconds");

    long startTime = System.currentTimeMillis();

    parallelSums = parallelAddMatrix(one, two);

    long endTime = System.currentTimeMillis();

    System.out.println("Parallel execution took " + (endTime - startTime) + " milliseconds.");

}

public static double[][] parallelAddMatrix(double[][] a, double[][] b) {
    RecursiveTask<double[][]> task = new SumMatricesTask(a, b);
    ForkJoinPool pool = new ForkJoinPool();
    double[][] result = new double[a.length][a.length];
    result = pool.invoke(task);
    return result;
}

@SuppressWarnings("serial")
private static class SumMatricesTask extends RecursiveTask<double[][]> {
    private final static int THRESHOLD = 200;

    private double[][] sumz;
    private double[][] one;
    private double[][] two;

    public SumMatricesTask(double[][] one, double[][] two) {
        this.one = one;
        this.two = two;
        this.sumz = new double[one.length][one.length];
    }

    @Override
    public double[][] compute() {
        if (this.one.length < THRESHOLD) {
            // Compute a sum here.
            // Add the sums of the matrices and store the result in the
            // matrix we will return later.

            double[][] aStuff = new double[this.one.length][this.one.length];

            for (int i = 0; i < one.length; i++) {
                for (int j = 0; j < one.length; j++) {
                    aStuff[i][j] = this.one[i][j] + this.two[i][j];
                }
            }

            return aStuff;

        } else {

            // Split a matrix into four smaller submatrices.
            // Create four forks, then four joins.

            int currentSize = this.one.length;

            int newSize = currentSize / 2;

            double[][] topLeftA = new double[newSize][newSize];
            double[][] topLeftB = new double[newSize][newSize];
            double[][] topLeftSums = new double[newSize][newSize];

            double[][] topRightA = new double[newSize][newSize];
            double[][] topRightB = new double[newSize][newSize];
            double[][] topRightSums = new double[newSize][newSize];

            double[][] bottomLeftA = new double[newSize][newSize];
            double[][] bottomLeftB = new double[newSize][newSize];
            double[][] bottomLeftSums = new double[newSize][newSize];

            double[][] bottomRightA = new double[newSize][newSize];
            double[][] bottomRightB = new double[newSize][newSize];
            double[][] bottomRightSums = new double[newSize][newSize];

            // Populate topLeftA and topLeftB
            for (int i = 0; i < newSize; i++) {
                for (int j = 0; j < newSize; j++) {
                    topLeftA[i][j] = this.one[i][j];
                    topLeftB[i][j] = this.two[i][j];
                }
            }

            // Populate bottomLeftA and bottomLeftB

            for (int i = 0; i < newSize; i++) {
                for (int j = 0; j < newSize; j++) {
                    bottomLeftA[i][j] = this.one[i + newSize][j];
                    bottomLeftB[i][j] = this.two[i + newSize][j];
                }
            }

            // Populate topRightA and topRightB

            for (int i = 0; i < newSize; i++) {
                for (int j = 0; j < newSize; j++) {
                    topRightA[i][j] = this.one[i][j + newSize];
                    topRightB[i][j] = this.two[i][j + newSize];
                }
            }

            // Populate bottomRightA and bottomRightB

            for (int i = 0; i < newSize; i++) {
                for (int j = 0; j < newSize; j++) {
                    bottomRightA[i][j] = this.one[i + newSize][j + newSize];
                    bottomRightB[i][j] = this.two[i + newSize][j + newSize];
                }
            }

            SumMatricesTask topLeft = new SumMatricesTask(topLeftA, topLeftB);
            SumMatricesTask topRight = new SumMatricesTask(topRightA, topRightB);
            SumMatricesTask bottomLeft = new SumMatricesTask(bottomLeftA, bottomLeftB);
            SumMatricesTask bottomRight = new SumMatricesTask(bottomRightA, bottomRightB);

            topLeft.fork();
            topRight.fork();
            bottomLeft.fork();
            bottomRight.fork();

            topLeftSums = topLeft.join();
            topRightSums = topRight.join();
            bottomLeftSums = bottomLeft.join();
            bottomRightSums = bottomRight.join();

            // Fuse the four matrices into one and return it.

            for (int i = 0; i < newSize; i++) {
                for (int j = 0; j < newSize; j++) {
                    this.sumz[i][j] = topLeftSums[i][j];
                }
            }

            for (int i = newSize; i < newSize * 2; i++) {
                for (int j = 0; j < newSize; j++) {
                    this.sumz[i][j] = bottomLeftSums[i - newSize][j];
                }
            }

            for (int i = 0; i < newSize; i++) {
                for (int j = newSize; j < newSize * 2; j++) {
                    this.sumz[i][j] = topRightSums[i][j - newSize];
                }
            }

            for (int i = newSize; i < newSize * 2; i++) {
                for (int j = newSize; j < newSize * 2; j++) {
                    this.sumz[i][j] = bottomRightSums[i - newSize][j - newSize];
                }
            }

            return this.sumz;
        }
    }
}

}

感谢任何帮助。

2 个答案:

答案 0 :(得分:1)

创建对象的速度比执行+的速度要快double

这意味着创建一个对象不是一个很好的权衡。更糟糕的是,使用更多内存意味着您的CPU缓存不能有效工作,在最坏的情况下,您的L1 / L2 cpu缓存中的工作现在位于L3缓存中,这是共享的,不是那么可扩展的,或者更糟糕的是,你最终使用了主内存。

我建议你改写这个

  • 你不创造任何物品。
  • 您认为跨越缓存行工作比分解它更有效。即按行而不是列分解工作。
  • 在Java中使用1D数组可以提高效率,所以想想如何使用只显示为2D martix的一维数组来实现这一点。

答案 1 :(得分:0)

您始终创建新阵列。它是昂贵的。为什么不在当前数组中进行计算?你可以为每个线程提供边框。