我需要帮助来理解和跟踪使用lme4的glmer()获得的交互。
数据来自语言处理实验,该实验研究了三个分类变量(控制/ copula /性别)对二项式响应(优选或不推荐)的影响。每个实验因素都有两个级别: 控制(对象/对象) copula(ser / estar) 性别(男性/女性)。
我运行以下模型:
...
<ExpansionPanel classes={{ expanded: classes.expanded }}>
...
这些是我获得的结果:
model1= glmer(preferences~control*copula*gender+(1|participant), family=binomial, data=data2)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: preferences_narrow ~ control * copula * gender + (1 | participant)
Data: data2
AIC BIC logLik deviance df.resid
1208.6 1261.1 -595.3 1190.6 2517
Scaled residuals:
Min 1Q Median 3Q Max
-8.6567 0.1970 0.2337 0.2883 0.5371
Random effects:
Groups Name Variance Std.Dev.
participant (Intercept) 0.254 0.504
Number of obs: 2526, groups: participant, 105
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.5034 0.2147 11.660 < 2e-16 ***
controlsubject 0.4882 0.3172 1.539 0.12380
copulaser 0.4001 0.3237 1.236 0.21646
gendermasc -0.4524 0.2659 -1.701 0.08888 .
controlsubject:copulaser -1.0355 0.4526 -2.288 0.02215 *
controlsubject:gendermasc 0.5790 0.4430 1.307 0.19121
copulaser:gendermasc 1.7343 0.5819 2.980 0.00288 **
controlsubject:copulaser:gendermasc -1.3121 0.7540 -1.740 0.08181 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) cntrls coplsr gndrms cntrlsbjct:c cntrlsbjct:g cplsr:
contrlsbjct -0.602
copulaser -0.588 0.401
gendermasc -0.724 0.488 0.479
cntrlsbjct:c 0.415 -0.701 -0.716 -0.342
cntrlsbjct:g 0.432 -0.716 -0.287 -0.599 0.502
cplsr:gndrm 0.332 -0.223 -0.556 -0.457 0.397 0.274
cntrlsbjc:: -0.252 0.421 0.430 0.352 -0.600 -0.588 -0.772
和controlsubject:copulaser
有两个重要的交互。
我跟进了使用em语的第一次互动:
copulaser:gendermasc
结果似乎表明,多种对比推动了互动(当我对第二次互动进行相同操作时,也会发生类似的情况):
emmeans(model1, list(pairwise ~ control + copula), adjust = "tukey")
但是,NOTE是什么意思?
NOTE: Results may be misleading due to involvement in interactions
$`emmeans of control, copula`
control copula emmean SE df asymp.LCL asymp.UCL
object estar 2.277256 0.1497913 Inf 1.983670 2.570841
subject estar 3.054906 0.1912774 Inf 2.680009 3.429802
object ser 3.544448 0.2697754 Inf 3.015698 4.073198
subject ser 2.630568 0.1752365 Inf 2.287110 2.974025
Results are averaged over the levels of: gender
Results are given on the logit (not the response) scale.
Confidence level used: 0.95
$`pairwise differences of control, copula`
contrast estimate SE df z.ratio p.value
object,estar - subject,estar -0.7776499 0.2215235 Inf -3.510 0.0025
object,estar - object,ser -1.2671927 0.2910689 Inf -4.354 0.0001
object,estar - subject,ser -0.3533119 0.2088155 Inf -1.692 0.3279
subject,estar - object,ser -0.4895427 0.3138092 Inf -1.560 0.4017
subject,estar - subject,ser 0.4243380 0.2396903 Inf 1.770 0.2877
object,ser - subject,ser 0.9138807 0.3048589 Inf 2.998 0.0145
Results are averaged over the levels of: gender
Results are given on the log odds ratio (not the response) scale.
P value adjustment: tukey method for comparing a family of 4 estimates
这是跟进这些互动的好程序吗?
提前谢谢! :)
答案 0 :(得分:0)
emmip(model1, gender ~ control * copula)
如果一个案例与另一个案例的预测结果相差很大,那么它们的平均值将是无稽之谈。但是,如果它们的比较几乎相同,则可以平均它们。这就是警告的内容。
我猜测您参加是为了担心与性别的互动-在这种情况下,您应该分别进行比较:
emmeans(model1, pairwise ~ control * copula | gender)