在Linux内核(专门用于设备驱动程序)中,我如何知道要锁定哪些变量以及何时需要锁定?特别是,为什么即使开发人员指向全局变量scull_devices,也仅在设置开发人员之后才锁定以下代码?
struct scull_qset {
void **data; /* pointer to an array of pointers which each point to a quantum buffer */
struct scull_qset *next;
};
struct scull_dev {
struct scull_qset *data; /* Pointer to first quantum set */
int quantum; /* the current quantum size */
int qset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure initialized in scull_init_module */
};
struct scull_dev *scull_devices; /* allocated dynamically in scull_init_module */
int scull_open(struct inode *inode, struct file *filp)
{
struct scull_dev *dev; /* device information */
dev = container_of(inode->i_cdev, struct scull_dev, cdev);
filp->private_data = dev; /* for other methods */
/* now trim to 0 the length of the device if open was write-only */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) {
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
scull_trim(dev); /* empty out the scull device */
up(&dev->sem);
}
return 0; /* success */
}
如果需要scull_init_module的代码以获取更完整的图片,则为:
int scull_major = SCULL_MAJOR;
int scull_minor = 0;
int scull_quantum = SCULL_QUANTUM;
int scull_qset = SCULL_QSET;
int scull_nr_devs = SCULL_NR_DEVS;
int scull_init_module(void)
{
int result, i;
dev_t dev = 0;
/* assigns major and minor numbers (left out for brevity sake) */
/*
* allocate the devices -- we can't have them static, as the number
* can be specified at load time
*/
scull_devices = kmalloc(scull_nr_devs * sizeof(struct scull_dev), GFP_KERNEL);
if (!scull_devices) {
result = -ENOMEM;
goto fail;
}
memset(scull_devices, 0, scull_nr_devs * sizeof(struct scull_dev));
/* Initialize each device. */
for (i = 0; i < scull_nr_devs; i++) {
scull_devices[i].quantum = scull_quantum;
scull_devices[i].qset = scull_qset;
init_MUTEX(&scull_devices[i].sem);
scull_setup_cdev(&scull_devices[i], i);
}
/* some other stuff left out for brevity sake */
return 0; /* succeed */
fail: /* isn't this a little redundant? */
scull_cleanup_module();
return result;
}
/*
* Set up the char_dev structure for this device.
*/
static void scull_setup_cdev(struct scull_dev *dev, int index)
{
int err, devno = MKDEV(scull_major, scull_minor + index);
cdev_init(&dev->cdev, &scull_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &scull_fops;
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be */
if (err)
printk(KERN_NOTICE "Error %d adding scull%d", err, index);
}
答案 0 :(得分:1)
该示例中的锁定与全局scull_devices
变量无关,但是锁定用于保护一个scull_dev
的属性。
例如假设存在一个read()
操作,该操作从size
复制了data
个字节,而上述scroll_trim()
操作则释放了data
。
因此,当进程#1调用open()
并且进程#2尝试同时从已打开的设备进行read()
时,read()
操作可以访问释放的{{1} }和哎呀。
这就是为什么您需要保护数据免受竞争。信号量是一种方法。互斥另一个通常更合适的互斥量。自旋锁和原子变量也可能起作用。
答案 1 :(得分:0)
锁定-这是保护关键部分的方法
关键部分-在驱动程序代码中,如果多个实例正在访问同一区域,则为关键部分。
多个实例-它可以是线程,常规ioctl cmd(来自用户空间)以及softirq和irq。这取决于您的驱动程序实现。
基于“上下文”,您也应该使用其他锁。
可以休眠的线程上下文->信号量/互斥量 非睡眠上下文->自旋锁 softirq,tasklet-> spin_lock_bh irq-> spin_lock_irq,spin_lock_irqsave
这完全取决于您的要求。
让我们举个例子。如果您使用的是网络驱动程序,则您的netdev具有统计信息和数据包缓冲区,并且这些数据需要通过锁定进行保护,因为它可以被多个实例(如来自用户空间的net_rx_softirq,net_tx_softirq,ioctl / netlink实例)更新,等等。
在这种情况下,根据资源的上下文,您需要使用其他锁/互斥锁,有时您需要使用多个锁。