Matlab中的交叉验证方法

时间:2019-03-22 16:28:52

标签: matlab classification cross-validation

当我使用SVM处理二进制分类问题时,我发现了两种交叉验证方式,我不知道哪种方法最有效?

使用 android { ... signingConfigs { config { keyPassword 'android' storeFile file(<path to debug keystore>) storePassword 'android' keyAlias 'androiddebugkey' } } ... } 并循环的第一种方法:

crossvalind

相反,使用k = 10; cvFolds = crossvalind('Kfold', data_lables, k); %# get indices of 10-fold cp = classperf(data_lables); for i = 1:k %# for each fold testIdx = (cvFolds == i); %# get indices of test instances trainIdx = ~testIdx; %# get indices training instances %# train an SVM model over training instances X= features(trainIdx,:); Y = data_lables(trainIdx); svmModel = fitcsvm(X,Y,'Standardize',true,'KernelFunction','RBF','KernelScale','auto'); %# test using test instances Z = features(testIdx,:); pred = predict(svmModel,Z); %# evaluate and update performance object cp = classperf(cp, pred, testIdx); end

cvpartition

0 个答案:

没有答案