Tensorflow几乎没有基准测试工具:
关于.pb基准测试工具的参数,我有几个问题:
num_threads
与单线程实验的并行运行次数或张量流所使用的内部线程有关吗?关于结果解释的几个问题:
count
是什么? Timings (microseconds): count=
与--max_num_runs
参数如何相关?示例:
Run --num_threads=-1 --max_num_runs=1000:
2019-03-20 14:30:33.253584: I tensorflow/core/util/stat_summarizer.cc:85] Timings (microseconds): count=1000 first=3608 curr=3873 min=3566 max=8009 avg=3766.49 std=202
2019-03-20 14:30:33.253584: I tensorflow/core/util/stat_summarizer.cc:85] Memory (bytes): count=1000 curr=3301344(all same)
2019-03-20 14:30:33.253591: I tensorflow/core/util/stat_summarizer.cc:85] 207 nodes observed
2019-03-20 14:30:33.253597: I tensorflow/core/util/stat_summarizer.cc:85]
2019-03-20 14:30:33.378352: I tensorflow/tools/benchmark/benchmark_model.cc:636] FLOPs estimate: 116.65M
2019-03-20 14:30:33.378390: I tensorflow/tools/benchmark/benchmark_model.cc:638] FLOPs/second: 46.30B
Run --num_threads=1 --max_num_runs=1000:
2019-03-20 14:32:25.591915: I tensorflow/core/util/stat_summarizer.cc:85] Timings (microseconds): count=1000 first=7502 curr=7543 min=7495 max=7716 avg=7607.22 std=34
2019-03-20 14:32:25.591934: I tensorflow/core/util/stat_summarizer.cc:85] Memory (bytes): count=1000 curr=3301344(all same)
2019-03-20 14:32:25.591952: I tensorflow/core/util/stat_summarizer.cc:85] 207 nodes observed
2019-03-20 14:32:25.591970: I tensorflow/core/util/stat_summarizer.cc:85]
2019-03-20 14:32:25.805970: I tensorflow/tools/benchmark/benchmark_model.cc:636] FLOPs estimate: 116.65M
2019-03-20 14:32:25.806007: I tensorflow/tools/benchmark/benchmark_model.cc:638] FLOPs/second: 15.46B
Run --num_threads=-1 --max_num_runs=10000:
2019-03-20 14:38:48.045824: I tensorflow/core/util/stat_summarizer.cc:85] Timings (microseconds): count=3570 first=3961 curr=3899 min=3558 max=6997 avg=3841.2 std=175
2019-03-20 14:38:48.045829: I tensorflow/core/util/stat_summarizer.cc:85] Memory (bytes): count=3570 curr=3301344(all same)
2019-03-20 14:38:48.045833: I tensorflow/core/util/stat_summarizer.cc:85] 207 nodes observed
2019-03-20 14:38:48.045837: I tensorflow/core/util/stat_summarizer.cc:85]
2019-03-20 14:38:48.169368: I tensorflow/tools/benchmark/benchmark_model.cc:636] FLOPs estimate: 116.65M
2019-03-20 14:38:48.169412: I tensorflow/tools/benchmark/benchmark_model.cc:638] FLOPs/second: 48.66B
Run --num_threads=1 --max_num_runs=10000:
2019-03-20 14:35:50.826722: I tensorflow/core/util/stat_summarizer.cc:85] Timings (microseconds): count=1254 first=7496 curr=7518 min=7475 max=7838 avg=7577.23 std=50
2019-03-20 14:35:50.826735: I tensorflow/core/util/stat_summarizer.cc:85] Memory (bytes): count=1254 curr=3301344(all same)
2019-03-20 14:35:50.826746: I tensorflow/core/util/stat_summarizer.cc:85] 207 nodes observed
2019-03-20 14:35:50.826757: I tensorflow/core/util/stat_summarizer.cc:85]
2019-03-20 14:35:51.053143: I tensorflow/tools/benchmark/benchmark_model.cc:636] FLOPs estimate: 116.65M
2019-03-20 14:35:51.053180: I tensorflow/tools/benchmark/benchmark_model.cc:638] FLOPs/second: 15.55B
即使用--max_num_runs=10000
时,计数为count=3570
和count=1254
是什么意思?
对于.tflite
基准测试工具:
--num_threads=1 --num_runs=10000
Initialized session in 0.682ms
Running benchmark for at least 1 iterations and at least 0.5 seconds
count=54 first=23463 curr=8019 min=7911 max=23463 avg=9268.5 std=2995
Running benchmark for at least 1000 iterations and at least 1 seconds
count=1000 first=8022 curr=6703 min=6613 max=10333 avg=6766.23 std=337
Average inference timings in us: Warmup: 9268.5, Init: 682, no stats: 6766.23
no stats: 6766.23
是什么意思?
答案 0 :(得分:3)
深入研究代码后,我发现了以下内容(所有时间均为微秒):
count
:实际运行次数first
:第一次迭代花费的时间curr
:上次迭代花费的时间min
:一次迭代花费的最短时间max
:一次迭代花费的最长时间avg
:一次迭代的平均时间std
:所有运行时间的标准偏差Warmup
:预热运行平均值Init
:启动时间(应始终与Initialized session in
相同)no stats
:名称很差的平均运行时间(与上一行的avg=
匹配)num_threads
:这用于设置intra_op_parallelism_threads
和inter_op_parallelism_threads
(更多信息here)相关文件(链接到相应的行)是:
stats_calculator.h
-实际跟踪运行时的代码benchmark_model.cc
(tflite)-奇怪的“无统计”名称benchmark_model.cc
(pb)-使用num_threads
相对使用GPU和不使用GPU,我不太确定。如果您正在使用freeze_graph
导出.pb
文件,则它将在图中存储每个节点的设备。您可以在导出之前使用设备放置来执行此操作。如果需要更改设置,可以尝试设置环境变量CUDA_VISIBLE_DEVICES=""
以确保未使用GPU。