我有一段代码用于可视化图形:
if (visualize == True):
# Black removed and is used for noise instead.
unique_labels = set(db.labels_)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (db.labels_ == k)
xy = scaled_points[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = scaled_points[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
# display the graph
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
# get the image into a variable that OpenCV likes
# uh, how?
在此有效的同时,我希望将最终结果(无论显示的内容)作为OpenCV图像。
由于我什至没有变量-image-,所以我不知道该如何实现。
有人做过类似的事情吗?
编辑:我实际上正在接近。现在,我可以用fig
创建一个OpenCV映像,但是内容不正确。无花果是空的。我想知道哪里出问题了?为什么它没有从上方获取plt
对象并绘制实际内容?
fig = plt.figure()
canvas = FigureCanvas(fig)
canvas.draw()
# convert canvas to image
graph_image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
graph_image = graph_image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
# it still is rgb, convert to opencv's default bgr
graph_image = cv2.cvtColor(graph_image,cv2.COLOR_RGB2BGR)
答案 0 :(得分:0)
好吧,我终于明白了!必须从一开始就创建fig
对象,然后使用必要的绘图功能,然后转换为canvas
,然后转换为OpenCV图像。
编辑:由于@ImportanceOfBeingErnest的建议,现在的代码更加简单了!
这是完整的代码:
if (visualize == True):
# create a figure
fig = plt.figure()
# Black removed and is used for noise instead.
unique_labels = set(db.labels_)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (db.labels_ == k)
xy = scaled_points[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = scaled_points[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
# convert it to an OpenCV image/numpy array
canvas = FigureCanvas(fig)
canvas.draw()
# convert canvas to image
graph_image = np.array(fig.canvas.get_renderer()._renderer)
# it still is rgb, convert to opencv's default bgr
graph_image = cv2.cvtColor(graph_image,cv2.COLOR_RGB2BGR)