让20个人(包括恰好3位女性)随机坐在4张桌子(分别表示(A,B,C,D))中,每张桌子有5个人,所有安排的可能性均等。令X为没有女人坐在的桌子数。编写一个numpy的蒙特卡洛模拟,以估计X的期望值,并估计没有女性坐在表A上的概率 p 。运行3个案例(100,1000,10000)
我想定义一个函数,该函数利用numpy的random.permutation函数来计算给定的可变试验次数,X的期望值,我了解如何在笔和纸上进行此操作,遍历我的概率集合并乘以他们彼此之间,这样我就可以计算出事件的总概率。这就是我到目前为止
T = 4 # number of tables
N = 20 # number of persons. Assumption: N is a multiple of T.
K = 5 # capacity per table
W = 3 # number of women. Assumption: first W of N persons are women.
M =100 #number of trials
collection = []
for i in range(K):
x = (((N-W)-i)/(N-i))
collection.append(x)
如果我检查自己的收藏,这是我的输出:[0.85,0.8421052631578947,0.8333333333333334,0.8235294117647058,0.8125]
答案 0 :(得分:2)
这是您对蒙特卡洛模拟的简单实施。它并非旨在提高性能,而是允许您交叉检查设置并查看详细信息:
import collections
import numpy as np
def runMonteCarlo(nw=3, nh=20, nt=4, N=20):
"""
Run Monte Carlo Simulation
"""
def countWomen(c, nt=4):
"""
Count Number of Women per Table
"""
x = np.array(c).reshape(nt, -1).T # Split permutation into tables
return np.sum(x, axis=0) # Sum woman per table
# Initialization:
comp = np.array([1]*nw + [0]*(nh-nw)) # Composition: 1=woman, 0=man
x = [] # Counts of tables without any woman
p = 0 # Probability of there is no woman at table A
for k in range(N):
c = np.random.permutation(comp) # Random permutation, table composition
w = countWomen(c, nt=nt) # Count Woman per table
nc = np.sum(w!=0) # Count how many tables with women
x.append(nt - nc) # Store count of tables without any woman
p += int(w[0]==0) # Is table A empty?
#if k % 100 == 0:
#print(c, w, nc, nt-nc, p)
# Rationalize (count->frequency)
r = collections.Counter(x)
r = {k:r.get(k, 0)/N for k in range(nt+1)}
p /= N
return r, p
执行工作:
for n in [100, 1000, 10000]:
s = runMonteCarlo(N=n)
E = sum([k*v for k,v in s[0].items()])
print('N=%d, P(X=k) = %s, p=%s, E[X]=%s' % (n, *s, E))
返回:
N=100, P(X=k) = {0: 0.0, 1: 0.43, 2: 0.54, 3: 0.03, 4: 0.0}, p=0.38, E[X]=1.6
N=1000, P(X=k) = {0: 0.0, 1: 0.428, 2: 0.543, 3: 0.029, 4: 0.0}, p=0.376, E[X]=1.601
N=10000, P(X=k) = {0: 0.0, 1: 0.442, 2: 0.5235, 3: 0.0345, 4: 0.0}, p=0.4011, E[X]=1.5924999999999998
绘制分布图会导致:
import pandas as pd
axe = pd.DataFrame.from_dict(s[0], orient='index').plot(kind='bar')
axe.set_title("Monte Carlo Simulation")
axe.set_xlabel('Random Variable, $X$')
axe.set_ylabel('Frequency, $F(X=k)$')
axe.grid()
警告::此方法不能解决所陈述的问题!
如果我们实现模拟的另一个版本,则我们更改随机实验的执行方式如下:
import random
import collections
def runMonteCarlo2(nw=3, nh=20, nt=4, N=20):
"""
Run Monte Carlo Simulation
"""
def one_experiment(nt, nw):
"""
Table setup (suggested by @Inon Peled)
"""
return set(random.randint(0, nt-1) for _ in range(nw)) # Sample nw times from 0 <= k <= nt-1
c = collections.Counter() # Empty Table counter
p = 0 # Probability of there is no woman at table A
for k in range(N):
exp = one_experiment(nt, nw) # Select table with at least one woman
c.update([nt - len(exp)]) # Update Counter X distribution
p += int(0 not in exp) # There is no woman at table A (table 0)
# Rationalize:
r = {k:c.get(k, 0)/N for k in range(nt+1)}
p /= N
return r, p
它返回:
N=100, P(X=k) = {0: 0.0, 1: 0.41, 2: 0.51, 3: 0.08, 4: 0.0}, p=0.4, E[X]=1.67
N=1000, P(X=k) = {0: 0.0, 1: 0.366, 2: 0.577, 3: 0.057, 4: 0.0}, p=0.426, E[X]=1.691
N=1000000, P(X=k) = {0: 0.0, 1: 0.37462, 2: 0.562787, 3: 0.062593, 4: 0.0}, p=0.42231, E[X]=1.687973
第二个版本趋向于另一个价值,并且显然不等同于第一个版本,它没有回答相同的问题。
要区分哪种实现是正确的,我对这两种实现都有computed sampled spaces and probabilities。第一个版本似乎是正确的版本,因为它考虑到女性坐在一张桌子旁的可能性取决于之前被选中的人。第二个版本没有考虑到这一点,这就是为什么它不需要知道每个桌子上有多少人以及可以容纳多少人的原因。
这是一个很好的问题,因为两个答案都提供接近的结果。工作的重要部分是正确设置蒙特卡洛输入。
答案 1 :(得分:1)
您可以在 Python 3.x 中使用functools.reduce
对集合中的项目进行乘法。
from functools import reduce
event_probability = reduce(lambda x, y: x*y, collection)
所以在您的代码中:
from functools import reduce
T = 4 # number of tables
N = 20 # number of persons. Assumption: N is a multiple of T.
K = 5 # capacity per table
W = 3 # number of women. Assumption: first W of N persons are women.
M = 100 #number of trials
collection = []
for i in range(K):
x = (((N-W)-i)/(N-i))
collection.append(x)
event_probability = reduce(lambda x, y: x*y, collection)
print(collection)
print(event_probability)
输出:
[0.85, 0.8421052631578947, 0.8333333333333334, 0.8235294117647058, 0.8125] # collection
0.3991228070175438 # event_probability
然后您可以使用结果完成代码。
答案 2 :(得分:0)
您必须明确模拟座位吗?如果不是,那么只需从1..4替换随机绘制3次即可模拟一次坐姿,即:
def one_experiment():
return set(random.randint(1, 4) for _ in range(3)) # Distinct tables with women.
然后按以下方式获得所需值,其中N是任何情况下的实验次数。
expectation_of_X = sum(4 - len(one_experiment()) for _ in range(N)) / float(N)
probability_no_women_table_1 = sum(1 not in one_experiment() for _ in range(N)) / float(N)
对于较大的N,您获得的值应约为p =(3/4)^ 3和E [X] =(3 ^ 3)/(4 ^ 2)。