我正在尝试过滤形状为(N_batch, N_data)
的TensorFlow张量,其中N_batch
是批处理大小(例如32),而N_data
是(嘈杂的)时间序列数组的大小。我有一个一维的高斯核(取自here)。然后,我想使用tensorflow.nn.conv1d
使该内核与信号卷积。
整个上午,我一直在努力获取正确的输入信号和内核尺寸,但是显然没有成功。从我从互连网上收集的信息来看,输入信号和内核的尺寸都需要以一种挑剔的方式进行对齐,而我只是想不出那是哪种方式。 TensorFlow错误消息也不是特别有意义(Shape must be rank 4 but is rank 3 for 'conv1d/Conv2D' (op: 'Conv2D') with input shapes: [?,1,1000], [1,81]
)。下面,我包含了一些代码来重现这种情况:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# Based on: https://stackoverflow.com/a/52012658/1510542
# Credits to @zephyrus
def gaussian_kernel(size, mean, std):
d = tf.distributions.Normal(tf.cast(mean, tf.float32), tf.cast(std, tf.float32))
vals = d.prob(tf.range(start=-size, limit=size+1, dtype=tf.float32))
kernel = vals # Some reshaping is required here
return kernel / tf.reduce_sum(kernel)
def gaussian_filter(input, sigma):
size = int(4*sigma + 0.5)
x = input # Some reshaping is required here
kernel = gaussian_kernel(size=size, mean=0.0, std=sigma)
conv = tf.nn.conv1d(x, kernel, stride=1, padding="SAME")
return conv
def run_filter():
tf.reset_default_graph()
# Define size of data, batch sizes
N_batch = 32
N_data = 1000
noise = 0.2 * (np.random.rand(N_batch, N_data) - 0.5)
x = np.linspace(0, 2*np.pi, N_data)
y = np.tile(np.sin(x), N_batch).reshape(N_batch, N_data)
y_noisy = y + noise
input = tf.placeholder(tf.float32, shape=[None, N_data])
smooth_input = gaussian_filter(input, sigma=10)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
y_smooth = smooth_input.eval(feed_dict={input: y_noisy})
plt.plot(y_noisy[0])
plt.plot(y_smooth[0])
plt.show()
if __name__ == "__main__":
run_filter()
有什么想法吗?
答案 0 :(得分:2)
由于TF卷积通常用于多通道输入/输出,因此需要在输入/内核中添加通道尺寸。在使用简单的1通道输入/输出时,这仅相当于添加一些大小为1的“虚拟”轴。
由于默认情况下,卷积会期望通道排在最后,因此您的占位符应为[None, N_data, 1]
形状,并且您的输入将像
y_noisy = y + noise
y_noisy = y_noisy[:, :, np.newaxis]
类似地,您需要将输入和输出通道尺寸添加到过滤器中:
kernel = gaussian_kernel(size=size, mean=0.0, std=sigma)
kernel = kernel[:, tf.newaxis, tf.newaxis]
也就是说,过滤器的形状应为[width, in_channels, out_cannels]
。