我使用pandas.cut
和由IntervalIndex.from_tuples
创建的bin离散了数据框中的一列。
剪切按预期工作,但是类别显示为我在IntervalIndex
中指定的元组。有什么办法可以将类别重命名为其他标签,例如(小,中,大)?
示例:
bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
结果类别为:
[NaN, (0, 1], NaN, (2, 3], (4, 5]]
Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
我正在尝试将[(0, 1] < (2, 3] < (4, 5]]
更改为1, 2 ,3
或small, medium ,large
之类的内容。
遗憾的是,使用IntervalIndex时会忽略pd.cut的label参数参数。
谢谢!
更新:
由于@SergeyBushmanov,我注意到只有在尝试更改数据框内的类别标签时才存在此问题(这是我要尝试的操作)。更新的示例:
In [1]: df = pd.DataFrame([0, 0.5, 1.5, 2.5, 4.5], columns = ['col1'])
In [2]: bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
In [3]: df['col1'] = pd.cut(df['col1'], bins)
In [4]: df['col1'].categories = ['small','med','large']
In [5]: df['col1']
Out [5]:
0 NaN
1 (0, 1]
2 NaN
3 (2, 3]
4 (4, 5]
Name: col1, dtype: category
Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
答案 0 :(得分:0)
假设我们碰巧有一些数据:
bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
x = pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins)
您可以尝试重新分配类别,例如:
In [7]: x.categories = [1,2,3]
In [8]: x
Out[8]:
[NaN, 1, NaN, 2, 3]
Categories (3, int64): [1 < 2 < 3]
或:
In [9]: x.categories = ["small", "medium", "big"]
In [10]: x
Out[10]:
[NaN, small, NaN, medium, big]
Categories (3, object): [small < medium < big]
更新:
df = pd.DataFrame([0, 0.5, 1.5, 2.5, 4.5], columns = ['col1'])
bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)])
x = pd.cut(df["col1"].to_list(),bins)
x.categories = [1,2,3]
df['col1'] = x
df.col1
0 NaN
1 1
2 NaN
3 2
4 3
Name: col1, dtype: category
Categories (3, int64): [1 < 2 < 3]
答案 1 :(得分:0)
series = pd.Series([0, 0.5, 1.5, 2.5, 4.5])
bins = [(0, 1), (2, 3), (4, 5)]
index = pd.IntervalIndex.from_tuples(bins)
intervals = index.values
names = ['small', 'med', 'large']
to_name = {interval: name for interval, name in zip(intervals, names)}
named_series = pd.Series(
pd.CategoricalIndex(pd.cut(series, bins_index)).rename_categories(to_name)
)
print(named_series)
0 NaN
1 small
2 NaN
3 med
4 large
dtype: category
Categories (3, object): ['small' < 'med' < 'large']