我正在尝试创建内核密度估计(KDE),以估计多对长尾山雀的原始范围。尽管滤除了少于五个GPS位置的对(“ nest_id”变量),但在尝试为所有个人创建kernelUD时,我仍然收到错误消息“至少需要5个重定位才能容纳原始范围”。我不确定到底是什么问题/我在做什么错。我对家庭范围分析以及R和adehabitatHR非常陌生。下面是我的代码。
library(dplyr)
# reading in location data
locations <- read.csv("./data/GPS_LOCATIONS_MASTER.csv")
## making nest_id a factor
locations$nest_id <- as.factor(locations$nest_id)
## filtering for points I want to include
location_sub <- filter(locations, start_at_nest == "no")
## taking out pairs (via nest_id) with less than 5 GPS locations
xorig <- subset(location_sub,
with(location_sub,
nest_id %in% names(which(table(nest_id) >= 5))))
glimpse(xorig)
Observations: 257
Variables: 10
$ point_id <int> 293, 294, 299, 300, 303, 306, 307, 312, 315, 318, 324…
$ nest_id <fct> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,…
$ female_id <fct> RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR…
$ male_id <fct> OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL…
$ lat <dbl> 53.38293, 53.38285, 53.38282, 53.38302, 53.38300, 53.…
$ lon <dbl> -1.554700, -1.554000, -1.553967, -1.554067, -1.553867…
$ start_at_nest <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, n…
$ place_in_sequence <int> 3, 1, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 5, 1, 2, 3, 4, 5,…
$ date_time <fct> 2019-02-27T13:26:31Z, 2019-02-27T13:28:46Z, 2019-02-2…
$ notes <fct> , , , , , , , , , , , , , , , , , , , , , , , , , ,
library(sp)
## projecting so that my x & y (in coords.x1 & coords.x2) are in metres
xorig_s <- SpatialPointsDataFrame(xorig,
coords = cbind(xorig$lon, xorig$lat),
proj4string = CRS("+proj=longlat +datum=WGS84 +no_defs"))
xorig_utm <- spTransform(xorig_s, CRS("+proj=utm +zone=30 +ellps=WGS84
+datum=WGS84 +units=m +no_defs"))
glimpse(as.data.frame(xorig_utm))
Observations: 257
Variables: 12
$ point_id <int> 293, 294, 299, 300, 303, 306, 307, 312, 315, 318, 324…
$ nest_id <fct> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,…
$ female_id <fct> RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR, RPR…
$ male_id <fct> OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL, OWL…
$ lat <dbl> 53.38293, 53.38285, 53.38282, 53.38302, 53.38300, 53.…
$ lon <dbl> -1.554700, -1.554000, -1.553967, -1.554067, -1.553867…
$ start_at_nest <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, n…
$ place_in_sequence <int> 3, 1, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 5, 1, 2, 3, 4, 5,…
$ date_time <fct> 2019-02-27T13:26:31Z, 2019-02-27T13:28:46Z, 2019-02-2…
$ notes <fct> , , , , , , , , , , , , , , , , , , , , , , , , , ,
$ coords.x1 <dbl> 596131.3, 596178.1, 596180.4, 596173.3, 596186.6, 596…
$ coords.x2 <dbl> 5915843, 5915835, 5915831, 5915853, 5915852, 5915848,…
library(adehabitatHR)
## trying to create :
kud <- kernelUD(xorig_utm[,1], h = "href")
## this procures the error message:
Error in kernelUD(xorig_utm[, 1], h = "href") :
At least 5 relocations are required to fit an home range
答案 0 :(得分:0)
已更新为指向最新版本的kernelUD()函数文档:
用法
kernelUD(xy, h = "href", grid = 60, same4all = FALSE, hlim = c(0.1, 1.5), kern = c("bivnorm", "epa"), extent = 1, boundary = NULL)
...
参数
xy An object inheriting the class SpatialPoints containing the x and y relocations of the animal. If xy inherits the class SpatialPointsDataFrame, it should contain only one column (factor) corresponding to the identity of the animals for each relocation.
因此,在上面使用示例的情况下,您可能还会使用Vignette:
我在下面给出了使用kernelUD的简短示例, puechabonsp数据集。请记住,组件的第一列 此数据集的重定位包含动物的身份:
> data(puechabonsp) > kud <- kernelUD(puechabonsp$relocs[,1], h="href") > kud
了解xy以上所需条件的一种方法是打印出包装示例中包含的示例数据:
data("puechabonsp")
head( puechabonsp$relocs[,1] )
coordinates Name
1 (699889, 3161560) Brock
2 (700046, 3161540) Brock
3 (698840, 3161030) Brock
4 (699809, 3161500) Brock
5 (698627, 3160940) Brock
6 (698719, 3160990) Brock
Coordinate Reference System (CRS) arguments: NA
请注意,puechabonsp $ relocs [,1]是一个SpatialPointsDataFrame对象,其中包含坐标和ID(即上面的“名称”)。
从此处继续,请查看?SpatialPointsDataFrame
帮助,以了解该功能及其创建的对象:
用法
SpatialPointsDataFrame(coords, data, coords.nrs = numeric(0), proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)
参数
coords numeric matrix or data.frame with coordinates (each row is a point); in case of SpatialPointsDataFrame an object of class SpatialPoints-class is also allowed.
“您的任务,应该选择接受...”是在SpatialPointsDataFrame中正确创建coords
,其中coords
包括坐标和动物ID。
从这里提出一个新问题,例如“如何创建包含动物ID的SpatialPointsDataFrame
”可能会有所帮助。如果您确实提出了这个问题,请确保包括可重现的数据集,因为这将对帮助人员大有帮助。