我有一个数据集[0,1,1,2],我想对其进行汇总。 为此,我必须手动计算并将“ frequency”:1/4放入DataFrame中。这是代码。
>>> df = pd.DataFrame({'value':[0, 1, 1, 2],
... 'frequency':1/4})
>>> df.groupby('value').sum()
frequency
value
0 0.25
1 0.50
2 0.25
有没有更有效的方法来聚合数据集并在Python或R中自动计算频率?
答案 0 :(得分:2)
答案 1 :(得分:2)
在R
prop.table(table(dat$value))
0 1 2
0.25 0.50 0.25
在python中,NumPy
import numpy as np
u,c=np.unique(df.value,return_counts=True)
pd.Series(c/c.sum(),index=u)
0 0.25
1 0.50
2 0.25
dtype: float64
答案 2 :(得分:1)
在R
中,您可以做类似的事情
library(data.table)
dt <- data.table(sample(0:2,100,replace=TRUE))
dt[,.N/nrow(dt),V1]
## > dt[,.N/nrow(dt),V1]
## V1 V1
## 1: 1 0.33
## 2: 2 0.32
## 3: 0 0.35
答案 3 :(得分:0)
不使用熊猫,您可以使用Counter
from collections import Counter
z = [0,1,1,2]
Counter(z)
Counter({1: 2, 0: 1, 2: 1})
然后到数据框
x = Counter(z)
df = pd.DataFrame.from_dict(x, orient='index').reset_index()
然后将值除以4(您所需的频率)
答案 4 :(得分:-1)
import pandas as pd
pd.Series([0, 1, 1, 2]).value_counts(normalize=True, sort=False)