我想在熊猫数据框的另一列上使用一列来apply
# function to select an item from a list in a column
def select_index(r, i):
return list(np.take(r, i))
# create DataFrame
col = ['index', 'Column2', 'Column3']
d = {'index': [['a1', 'a2', 'a3'], ['a10', 'a20', 'a30']],
'Column2': [['b1', 'b2', 'b3'], ['b10', 'b20', 'b30']],
'Column3': [[0, 1], [1, 2]]
}
df = pd.DataFrame(data=d, columns=col)
df.set_index('index', inplace=True)
print(df)
Column2 Column3
index
[a1, a2, a3] [b1, b2, b3] [0, 1]
[a10, a20, a30] [b10, b20, b30] [1, 2]
当我像这样操作apply
时:
df['Column2'] = df[['Column2', 'Column3']].apply(lambda x: select_index(*x), axis=1)
我收到以下错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-241-60f4b4130a38> in <module>
1 df.loc = df[['Column2', 'Column3']].apply(
2 lambda x: select_index(*x),
----> 3 axis=1
4 )
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, result_type, args, **kwds)
6012 args=args,
6013 kwds=kwds)
-> 6014 return op.get_result()
6015
6016 def applymap(self, func):
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/apply.py in get_result(self)
140 return self.apply_raw()
141
--> 142 return self.apply_standard()
143
144 def apply_empty_result(self):
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/apply.py in apply_standard(self)
246
247 # compute the result using the series generator
--> 248 self.apply_series_generator()
249
250 # wrap results
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/apply.py in apply_series_generator(self)
274 else:
275 try:
--> 276 for i, v in enumerate(series_gen):
277 results[i] = self.f(v)
278 keys.append(v.name)
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/apply.py in <genexpr>(.0)
365 constructor = self.obj._constructor_sliced
366 return (constructor(arr, index=self.columns, name=name)
--> 367 for i, (arr, name) in enumerate(zip(self.values,
368 self.index)))
369
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
279 generic.NDFrame.__init__(self, data, fastpath=True)
280
--> 281 self.name = name
282 self._set_axis(0, index, fastpath=True)
283
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/generic.py in __setattr__(self, name, value)
4396 object.__setattr__(self, name, value)
4397 elif name in self._metadata:
-> 4398 object.__setattr__(self, name, value)
4399 else:
4400 try:
~/miniconda3/envs/cl/lib/python3.6/site-packages/pandas/core/series.py in name(self, value)
406 def name(self, value):
407 if value is not None and not is_hashable(value):
--> 408 raise TypeError('Series.name must be a hashable type')
409 object.__setattr__(self, '_name', value)
410
TypeError: Series.name must be a hashable type
我真的不明白为什么会这样。
有什么解决方案可以解决此问题?
编辑: 我希望结果数据框像这样:
Column2 Column3
index
[a1, a2, a3] [b1, b2] [0, 1]
[a10, a20, a30] [b20, b30] [1, 2]
答案 0 :(得分:4)
这似乎是您的索引是可变对象的问题。如果先重置,一切就开始起作用。
df.reset_index().apply(lambda x: select_index(x['Column2'], x['Column3']), axis=1)
0 [b1, b2]
1 [b20, b30]
dtype: object
或者,
df.reset_index()[['Column2', 'Column3']].apply(lambda x: select_index(*x), axis=1)
0 [b1, b2]
1 [b20, b30]
dtype: object
df['Column4'] = df.reset_index()[['Column2', 'Column3']].apply(
lambda x: select_index(*x), axis=1).values
df
Column2 Column3 Column4
index
[a1, a2, a3] [b1, b2, b3] [0, 1] [b1, b2]
[a10, a20, a30] [b10, b20, b30] [1, 2] [b20, b30]
答案 1 :(得分:2)
为什么不只在这里使用for循环
[select_index (x, y )for x,y in zip(df['Column2'], df['Column3'])]
Out[314]: [['b1', 'b2'], ['b20', 'b30']]