我有一个关于广播数据的项目。我为python编写了从视频到帧的拆分。但我只是想知道,如果我只能在blackFrames之间拍摄视频帧会更好。我分享我的代码;
import cv2
import time
import os
def video_to_frames(input_loc, output_loc):
"""Function to extract frames from input video file
and save them as separate frames in an output directory.
Args:
input_loc: Input video file.
output_loc: Output directory to save the frames.
Returns:
None
"""
try:
os.mkdir(output_loc)
except OSError:
pass
# Log the time
time_start = time.time()
# Start capturing the feed
cap = cv2.VideoCapture(input_loc)
# Find the number of frames
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
print ("Number of frames: ", video_length)
count = 0
print ("Converting video..\n")
# Start converting the video
while cap.isOpened():
# Extract the frame
ret, frame = cap.read()
# Write the results back to output location.
cv2.imwrite(output_loc + "/%#05d.jpg" % (count+1), frame)
count = count + 1
# If there are no more frames left
if (count > (video_length-1)):
# Log the time again
time_end = time.time()
# Release the feed
cap.release()
# Print stats
print ("Done extracting frames.\n%d frames extracted" % count)
print ("It took %d seconds forconversion." % (time_end-time_start))
break
input_loc = 'try.mp4'
output_loc = 'try/'
video_to_frames(input_loc, output_loc)
答案 0 :(得分:1)
由于openCV中的图像(或在您的情况下为帧)以numpy数组表示,因此可以将其取低值(表示黑框)进行平均。
import numpy as np
# converts the frame to gray scale for easier computation
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if np.average(gray) < 20:
# skips an iteration, so the frame isn't saved
continue
在这种情况下,20
是用于“黑色图像”的阈值。如果有些更轻,则可以增加此常数。因此,您的总代码应如下所示:
import cv2
import numpy as np
import time
import os
def video_to_frames(input_loc, output_loc):
"""Function to extract frames from input video file
and save them as separate frames in an output directory.
Args:
input_loc: Input video file.
output_loc: Output directory to save the frames.
Returns:
None
"""
try:
os.mkdir(output_loc)
except OSError:
pass
# Log the time
time_start = time.time()
# Start capturing the feed
cap = cv2.VideoCapture(input_loc)
# Find the number of frames
video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
print("Number of frames: ", video_length)
count = 0
print("Converting video..\n")
# Start converting the video
while cap.isOpened():
# Extract the frame
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if np.average(gray) < 20:
# skips an iteration, so the frame isn't saved
continue
# Write the results back to output location.
cv2.imwrite(output_loc + "/%#05d.jpg" % (count+1), frame)
count = count + 1
# If there are no more frames left
if count > video_length-1:
# Log the time again
time_end = time.time()
# Release the feed
cap.release()
# Print stats
print("Done extracting frames.\n%d frames extracted" % count)
print("It took %d seconds forconversion." % (time_end-time_start))
break
input_loc = 'try.mp4'
output_loc = 'try/'
video_to_frames(input_loc, output_loc)
答案 1 :(得分:0)
就我而言,我有一些镜框多数为黑色,但并非全黑。 np.average(image) < 20
仍将它们标记为黑框。取而代之的是,我使用np.max(image) < 20
在我的情况下效果很好。正如Komron所说,可能需要针对您的用例调整20。