我正在尝试使用Dask对Dataframe执行groupby操作。 下面的代码不起作用,但是,即使我在仪表板(http://localhost:8787/status上看不到任何内容,如果我从另一个控制台初始化客户端,代码也可以工作:我的意思是,有一个仪表板,但是所有的数字看起来都是空的。我在macOS上。 代码:
from datetime import datetime
import numpy as np
import os
from dask import dataframe as dd
from dask.distributed import Client
import pandas as pd
client = Client()
# open http://localhost:8787/status
csv_path = 'chicago-complete.monthly.2018-07-01-to-2018-07-31/data.csv'
dir_destination = 'data'
df = dd.read_csv(csv_path,
dtype = {
'timestamp': str,
'node_id': str,
'subsystem': str,
'sensor': str,
'parameter': str,
'value_raw': str,
'value_hrf': str,
},
parse_dates=['timestamp'],
date_parser=lambda x: pd.datetime.strptime(x, '%Y/%m/%d %H:%M:%S')
)
#%%
if not os.path.exists(dir_destination):
os.makedirs(dir_destination)
def create_node_csv(df_node):
# test function
return len(df_node)
res = df.groupby('node_id').apply(create_node_csv, meta=int)
csv文件仅由字符串列组成。我的目标是将一列中包含某个值的所有行组成一组,然后使用create_node_csv(df_node)将它们另存为单独的文件(即使现在是虚拟函数)。可以通过其他任何方式来实现它,但是我想了解这里发生了什么。
当我运行它时,控制台多次打印以下错误: tornado.application-错误-收益清单中有多个例外 追溯(最近一次通话):
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 883, in callback
result_list.append(f.result())
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1141, in run
yielded = self.gen.throw(*exc_info)
File "/anaconda3/lib/python3.7/site-packages/distributed/deploy/local.py", line 208, in _start_worker
yield w._start()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1133, in run
value = future.result()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1141, in run
yielded = self.gen.throw(*exc_info)
File "/anaconda3/lib/python3.7/site-packages/distributed/nanny.py", line 157, in _start
response = yield self.instantiate()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1133, in run
value = future.result()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1141, in run
yielded = self.gen.throw(*exc_info)
File "/anaconda3/lib/python3.7/site-packages/distributed/nanny.py", line 226, in instantiate
self.process.start()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1133, in run
value = future.result()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1141, in run
yielded = self.gen.throw(*exc_info)
File "/anaconda3/lib/python3.7/site-packages/distributed/nanny.py", line 370, in start
yield self.process.start()
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1133, in run
value = future.result()
File "/anaconda3/lib/python3.7/site-packages/distributed/process.py", line 35, in _call_and_set_future
res = func(*args, **kwargs)
File "/anaconda3/lib/python3.7/site-packages/distributed/process.py", line 184, in _start
process.start()
File "/anaconda3/lib/python3.7/multiprocessing/process.py", line 112, in start
self._popen = self._Popen(self)
File "/anaconda3/lib/python3.7/multiprocessing/context.py", line 291, in _Popen
return Popen(process_obj)
File "/anaconda3/lib/python3.7/multiprocessing/popen_forkserver.py", line 35, in __init__
super().__init__(process_obj)
File "/anaconda3/lib/python3.7/multiprocessing/popen_fork.py", line 20, in __init__
self._launch(process_obj)
File "/anaconda3/lib/python3.7/multiprocessing/popen_forkserver.py", line 42, in _launch
prep_data = spawn.get_preparation_data(process_obj._name)
File "/anaconda3/lib/python3.7/multiprocessing/spawn.py", line 143, in get_preparation_data
_check_not_importing_main()
File "/anaconda3/lib/python3.7/multiprocessing/spawn.py", line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.''')
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
并且:
distributed.nanny - WARNING - Worker process 1844 exited with status 1
distributed.nanny - WARNING - Restarting worker
并且:
Traceback (most recent call last):
File "/anaconda3/lib/python3.7/multiprocessing/queues.py", line 242, in _feed
send_bytes(obj)
File "/anaconda3/lib/python3.7/multiprocessing/connection.py", line 200, in send_bytes
self._send_bytes(m[offset:offset + size])
File "/anaconda3/lib/python3.7/multiprocessing/connection.py", line 404, in _send_bytes
self._send(header + buf)
File "/anaconda3/lib/python3.7/multiprocessing/connection.py", line 368, in _send
n = write(self._handle, buf)
BrokenPipeError: [Errno 32] Broken pipe
tornado.application - ERROR - Multiple exceptions in yield list
Traceback (most recent call last):
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 883, in callback
result_list.append(f.result())
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1147, in run
yielded = self.gen.send(value)
File "/anaconda3/lib/python3.7/site-packages/distributed/deploy/local.py", line 217, in _start_worker
raise gen.TimeoutError("Worker failed to start")
tornado.util.TimeoutError: Worker failed to start
tornado.application - ERROR - Multiple exceptions in yield list
Traceback (most recent call last):
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 883, in callback
result_list.append(f.result())
File "/anaconda3/lib/python3.7/site-packages/tornado/gen.py", line 1147, in run
yielded = self.gen.send(value)
File "/anaconda3/lib/python3.7/site-packages/distributed/deploy/local.py", line 217, in _start_worker
编辑: 根据答案: -如果再次运行该程序,如何防止创建新客户端? -我该怎么做?
def create_node_csv(df_node):
return len(df_node)
它返回以下错误,它与meta参数有关吗?
ValueError: cannot reindex from a duplicate axis
答案 0 :(得分:1)
运行脚本时,Client()
导致生成新的Dask工作程序,该工作程序还从原始主进程中获取变量的副本。在某些情况下,这涉及到在每个工作程序中重新导入脚本,然后每个工作程序都尝试创建Client
和新的进程集。
与通常在进程中运行的任何内容一样,最佳答案是使用函数并保护主执行。以下是一种无需更改单脚本结构的方法:
from datetime import datetime
import numpy as np
import os
from dask import dataframe as dd
from dask.distributed import Client
import pandas as pd
csv_path = 'chicago-complete.monthly.2018-07-01-to-2018-07-31/data.csv'
dir_destination = 'data'
def run():
client = Client()
df = dd.read_csv(csv_path, ...)
if not os.path.exists(dir_destination):
os.makedirs(dir_destination)
def create_node_csv(df_node):
# test function
return len(df_node)
res = df.groupby('node_id').apply(create_node_csv, meta=int)
print(res.compute())
if __name__ == "__main__":
run()
如果再次运行该程序,如何防止创建新的客户端?
在对Client()
的调用中,您可以包含现有群集的地址(如果知道)。另外,某些特定类型的部署(有几种)可能具有“当前集群”的概念。