我正在使用Dask分发某些函数的计算。我的总体布局如下:
from dask.distributed import Client, LocalCluster, as_completed
cluster = LocalCluster(processes=config.use_dask_local_processes,
n_workers=1,
threads_per_worker=1,
)
client = Client(cluster)
cluster.scale(config.dask_local_worker_instances)
work_futures = []
# For each group do work
for group in groups:
fcast_futures.append(client.submit(_work, group))
# Wait till the work is done
for done_work in as_completed(fcast_futures, with_results=False):
try:
result = done_work.result()
except Exception as error:
log.exception(error)
我的问题是,对于大量作业,我倾向于达到内存限制。我看到很多:
distributed.worker - WARNING - Memory use is high but worker has no data to store to disk. Perhaps some other process is leaking memory? Process memory: 1.15 GB -- Worker memory limit: 1.43 GB
似乎每个未来都不会释放自己的记忆。我该如何触发呢?我在Python 2.7上使用dask == 1.2.0。
答案 0 :(得分:0)
只要客户端有指望它的结果,调度程序就会对结果有所帮助。在python垃圾回收最后一个future时(或不久之后)释放内存。在您的情况下,您将在整个计算过程中将所有期货保存在列表中。您可以尝试修改循环:
for done_work in as_completed(fcast_futures, with_results=False):
try:
result = done_work.result()
except Exception as error:
log.exception(error)
done_work.release()
或将as_completed
循环替换为可以将期货从列表中明确删除的东西。