如何在以下数据框中的point_rotation
,Coordinates1
列上应用函数Coordinates2
:
def point_rotation(point):
"""
Changing axis
"""
xcor, ycor = (700, 0)
xcor1, ycor1 = (0, 0)
xpoint, ypoint = point
xnew = xpoint - xcor
ynew = ypoint - ycor
xnew = xcor1 + math.cos(math.radians(270)) * (xnew - xcor1) - math.sin(math.radians(90)) * (ynew - ycor1)
ynew = ycor1 + math.sin(math.radians(270)) * (xnew - xcor1) + math.cos(math.radians(90)) * (ynew - ycor1)
return round(xnew, 0), round(ynew, 0)
这是我当前的数据框:
df = pd.DataFrame({'X_1': [-34.58, -15.78, -33.45, 4.60, 10.48],
'Y_1': [-58.66, -47.91, -70.66, -74.08, -66.86],
'X_2': [-3.58, -1.8, -3.5, 4.0, 1.48],
'Y_2': [-5.66, -4.1, -7.6, -7.8, -6.86]})
df['Coordinates1'] = list(zip(df.X_1, df.Y_1))
df['Coordinates2'] = list(zip(df.X_2, df.Y_2))
想要的输出:应该具有Coordinates3
和Coordinates4
列,这些列基本上是通过传递point_rotation
和Coordinates1
列而从Coordinates2
函数派生的。
我尝试使用apply
函数,但抛出一个错误:too many values to unpack (expected 2)
。
感谢您的帮助!
答案 0 :(得分:0)
如果您使用列表理解。您的新点将是一个元组(类似于您定义Coordinates1
和Coordinates2
的方式)
df['Coordinates3'] = [point_rotation(point) for point in df['Coordinates1']]
apply
似乎也可以工作:)
df['Coordinates4'] = df['Coordinates2'].apply(point_rotation)
答案 1 :(得分:0)
就做
df['Coordinates3'] = df['Coordinates1'].apply(point_rotation)
df['Coordinates4'] = df['Coordinates2'].apply(point_rotation)