我不明白在创建函数时,如果函数有其他参数,应该如何使用“行”。 我想创建一个函数来计算我的数据框“文件”的新列。
这很有效:
def imputation(row):
if (row['hour_y']==0) & (row['outlier_idx']==True) :
val=file['HYDRO'].mean()
else :
val=row['HYDRO']
return val
file['minute_corr'] = file.apply(imputation, axis=1)
但这不起作用(我添加了一个论点):
def imputation(row,variable):
if (row['hour_y']==0) & (row['outlier_idx']==True) :
val=file[variable].mean()
else :
val=row[variable]
return val
file['minute_corr'] = file.apply(imputation(,'HYDRO'), axis=1)
答案 0 :(得分:1)
尝试这种矢量化方法:
file['minute_corr'] = np.where((file['hour_y']==0) & file['outlier_idx'],
file['HYDRO'].mean(),
file['HYDRO'])
答案 1 :(得分:0)
使用apply
函数,您还可以并行化计算。
file['minute_corr'] = file.apply(lambda row: (file['HYDRO'].mean() if (row['hour_y']==0) & (row['outlier_idx']==True) else row['HYDRO'] ), axis=1)
答案 2 :(得分:0)
apply方法可以采用位置和关键字参数:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.apply.html
对于最后一行尝试: 尝试:
file['minute_corr'] = file.apply(imputation,args=('HYDRO',), axis=1)