将多个熊猫列转换为json

时间:2019-03-13 06:57:07

标签: python pandas dictionary

我的数据框df就像:

col_1  col_2    col_3
A      Product  1
B      product  2
C      Offer    1
D      Product  1

我想要的是将所有此列转换为json,条件是col_2和col_1的行应为键值对。我尝试了以下方法:

df['col_1_2'] = df.apply(lambda row: {row['col_2']:row['col_1']}, axis=1)
df['final_col']=df[['col_1_2','col_3']].to_dict('r')

我的df ['final_col']的第一行是:

{'col_1_2': {'product': A}, 'value': 1.0},

但是我想要的是:

{'product': A, 'value': 1.0}

1 个答案:

答案 0 :(得分:3)

添加缺失键,其值为col_3

df['final_col'] = df.apply(lambda row: {row['col_2']:row['col_1'], 'value':row['col_3']},
                            axis=1)
print (df)
  col_1    col_2  col_3                     final_col
0     A  Product      1  {'Product': 'A', 'value': 1}
1     B  product      2  {'product': 'B', 'value': 2}
2     C    Offer      1    {'Offer': 'C', 'value': 1}
3     D  Product      1  {'Product': 'D', 'value': 1}

如果需要在列表中输出:

L = [{b:a, 'value':c} for a,b,c in zip(df['col_1'], df['col_2'], df['col_3'])]
print (L)
[{'Product': 'A', 'value': 1}, 
 {'product': 'B', 'value': 2}, 
 {'Offer': 'C', 'value': 1}, 
 {'Product': 'D', 'value': 1}]

json

import json
j = json.dumps([{b:a, 'value':c} for a,b,c in zip(df['col_1'], df['col_2'], df['col_3'])])
print (j)

[{"Product": "A", "value": 1}, 
 {"product": "B", "value": 2},
 {"Offer": "C", "value": 1}, 
 {"Product": "D", "value": 1}]