我想将以下内容转换为系列文章。
Trades Before Trades After Predicted Change
count 31540.000000 1000.000000 1000.000000 -0.968294
mean 39.151712 42.216000 90.144811 0.078267
std 130.948917 143.153156 1.345089 0.093198
min -1611.000000 -1371.000000 88.234987 -0.148976
25% 29.000000 34.000000 89.052902 0.172414
50% 74.000000 79.000000 89.979200 0.067568
75% 99.000000 109.000000 91.127657 0.101010
max 184.000000 179.000000 93.915568 -0.027174
索引是行名称和列名称的组合,例如:
Trades After 50% 79.000000
答案 0 :(得分:1)
您可以使用pandas.melt
取消隐藏数据框。在这种特殊情况下,您需要将索引提升为列:
res = pd.melt(df.reset_index(), id_vars=['index'])
结果:
print(res)
index variable value
0 count TradesBefore 31540.000000
1 mean TradesBefore 39.151712
2 std TradesBefore 130.948917
3 min TradesBefore -1611.000000
4 25% TradesBefore 29.000000
5 50% TradesBefore 74.000000
6 75% TradesBefore 99.000000
7 max TradesBefore 184.000000
8 count TradesAfter 1000.000000
9 mean TradesAfter 42.216000
10 std TradesAfter 143.153156
11 min TradesAfter -1371.000000
12 25% TradesAfter 34.000000
13 50% TradesAfter 79.000000
14 75% TradesAfter 109.000000
15 max TradesAfter 179.000000
16 count Predicted 1000.000000
17 mean Predicted 90.144811
18 std Predicted 1.345089
19 min Predicted 88.234987
20 25% Predicted 89.052902
21 50% Predicted 89.979200
22 75% Predicted 91.127657
23 max Predicted 93.915568
24 count Change -0.968294
25 mean Change 0.078267
26 std Change 0.093198
27 min Change -0.148976
28 25% Change 0.172414
29 50% Change 0.067568
30 75% Change 0.101010
31 max Change -0.027174