使用BERT预测下一句

时间:2019-03-11 22:29:40

标签: tensorflow deep-learning nlp reproducible-research natural-language-processing

Google的BERT已接受下一句预测功能的预训练,但我想知道是否有可能在新数据上调用下一句预测功能。

这个想法是:给定句子A和给定句子B,我想要一个概率标签来确定句子B是否跟随句子A。BERT对大量数据进行了预训练,所以我希望使用下一个句子的预测在新句子数据上。我似乎无法弄清楚是否可以调用下一个句子预测函数,如果可以,如何调用。感谢您的帮助!

2 个答案:

答案 0 :(得分:5)

Aerin的答案已过时。在过去的几个月中,HuggingFace库(现在称为transformers)已经发生了很大变化。这是一个如何使用下一个句子预测(NSP)模型以及如何从中提取概率的示例。

from torch.nn.functional import softmax
from transformers import BertForNextSentencePrediction, BertTokenizer


seq_A = 'I like cookies !'
seq_B = 'Do you like them ?'

# load pretrained model and a pretrained tokenizer
model = BertForNextSentencePrediction.from_pretrained('bert-base-cased')
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

# encode the two sequences. Particularly, make clear that they must be 
# encoded as "one" input to the model by using 'seq_B' as the 'text_pair'
encoded = tokenizer.encode_plus(seq_A, text_pair=seq_B, return_tensors='pt')
print(encoded)
# {'input_ids': tensor([[  101,   146,  1176, 18621,   106,   102,  2091,  1128,  1176,  1172, 136,   102]]),
#  'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]),
#  'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
# NOTE how the token_type_ids are 0 for all tokens in seq_A and 1 for seq_B, 
# this way the model knows which token belongs to which sequence

# a model's output is a tuple, we only need the output tensor containing
# the relationships which is the first item in the tuple
seq_relationship_logits = model(**encoded)[0]

# we still need softmax to convert the logits into probabilities
# index 0: sequence B is a continuation of sequence A
# index 1: sequence B is a random sequence
probs = softmax(seq_relationship_logits, dim=1)

print(seq_relationship_logits)
print(probs)
# tensor([[9.9993e-01, 6.7607e-05]], grad_fn=<SoftmaxBackward>)
# very high value for index 0: high probability of seq_B being a continuation of seq_A

答案 1 :(得分:2)

拥抱脸为您做到了:https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/modeling.py#L854

class BertForNextSentencePrediction(BertPreTrainedModel):
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.
    Params:
        config: a BertConfig class instance with the configuration to build a new model.
    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
            Outputs the next sentence classification logits of shape [batch_size, 2].
    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
        super(BertForNextSentencePrediction, self).__init__(config)
        self.bert = BertModel(config)
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None):
        _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
                                     output_all_encoded_layers=False)
        seq_relationship_score = self.cls( pooled_output)

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
            return next_sentence_loss
        else:
            return seq_relationship_score